zfp Documentation
Release 1.0.1

Peter Lindstrom
Danielle Asher

Dec 15, 2023

Availability oL oo

Notice. e

CMake Builds,
GNUBuilds
Testing
Build Targets
Configuration L.
Dependencies

Introduction

1.1

1.2 Application Support
1.3

1.4

1.5

License

2.1

Installation

3.1

32

33

34

3.5

3.6

Algorithm

4.1 Lossy Compression

4.2

Lossless Compression

Compression Modes

5.1
52
53
54
55

ExpertMode
Fixed-RateMode
Fixed-Precision Mode
Fixed-Accuracy Mode
Reversible Mode

Parallel Execution

6.1

6.2 Execution Parameters

6.3 Fixed- vs. Variable-Rate Compression
6.4

6.5

6.6 Setting the Execution Policy

6.7 Parallel Compression

6.8 Parallel Decompression

High-Level C API

7.1

Execution Policies

UsingOpenMP
UsingCUDA,

Macros e

Usage o o o e e
Technology
Resources

CONTENTS

W N NN

W

10

11

12

13

14

T2 TTYPES o v o e e e e e

T3 CONSANLS . . . v v v et e
T4 FunctionsS o e e e e e e e e e e e e e e
Low-Level C API

8.1 Stream Manipulation L. e e e e e e e e
82 Encoder. e e e e e
8.3 Decoder. e e e e e e e e e e e
8.4 Utility Functions e e e e e
8.5 CH+Wrappers o e e e e e e e e e e e
Bit Stream API

9.1 Strided Streams e e e e e e e e e e e e e
0.2 MACTOS '+ v v v o e e e e e e e e e e e e e e e e e e e
0.3 TYPES « v v e e e e e e e e e e e e e e e e
0.4 ConStants i i e e e e e e e e e e e e e e e e e e
9.5 Functions e e e e e e e e e
Python Bindings

10.1 CompressSion v v v v v e
10.2 Decompression L L e e e e e e e e e e e e e e e e e

Fortran Bindings

TLL TYPES « o o v o e
11.2 Constants e e e e e e e e e e e e e
11.3 Functions and Subroutines e e e e e e e e e

Compressed-Array C++ Classes

12.1 Read-Write Fixed-Rate Arrays L e
12.2 Read-Only Variable-Rate Arrays e
123 Caching o e e e e e e e e e e
12,4 Serialization e e e e e
12.5 References e e e e e e e
12,6 Pointers o o e e e e e e e e e e
127 TGerators v o o e e e e e e e e e e e e e e
128 VIBWS . . . o o e e e e
129 Codec o
1210 Index o e e e e

Compressed-Array C Bindings

131 AITAYS . . o e e e e e e e e e e
13.2 Serialization L. e e e e e e e e e e e e e e e e
133 Array ACCESSOTS . o v v v v v i e
134 References e e e e e
13.5 Pointers e e e e
13.6 Tterators i e e e e e e e e e e e e

Tutorial

14.1 High-Level ClInterface o . i e e e e e e e e e e e
142 Low-Level Clnterface e
143 Compressed C+4+ AITays o 0 0ttt e e e e e e e e e

15 File Compressor

IS.1 USAge . . . o v ot e e e e e e e

28
31
32

39
40
40
43
46
46

49
49
49
50
51
51

55
55
56

59
59
60
62

77
78
84
89
89
92
94
97
100
114
118

121
122
127
129
129
130
133

137
137
140
141

147

16 Code Examples
16.1 Simple Compressor

16.2 Compressed-Array C++ Classes« o o v vt vttt e e e e

16.3 Diffusion Solver .
16.4 Speed Benchmark

16.5 PGM Image Compression v v v v v v vt ettt e e e e e e e e
16.6 PPM Image COMPIession v v v v v it et e e e e e e e e e e e e e e e e
16.7 In-place COMPIESSION v v v it e et e e e e e e e e e e e e e e e e e e

16.8 TIterators
17 Regression Tests
18 FAQ
19 Troubleshooting
20 Limitations
21 Future Directions
22 Contributors

23 Release Notes
23.1 1.0.1(2023-12-15)
23.2 1.0.0 (2022-08-01)
23.3 0.5.5(2019-05-05)
23.4 0.5.4 (2018-10-01)
23.5 0.5.3 (2018-03-28)
23.6 0.5.2 (2017-09-28)
23.7 0.5.1(2017-03-28)
23.8 0.5.0 (2016-02-29)
23.9 0.4.1(2015-12-28)
23.10 0.4.0 (2015-12-05)
23.11 0.3.2 (2015-12-03)
23.12 0.3.1 (2015-05-06)
23.13 0.3.0 (2015-03-03)
23.14 0.2.1 (2014-12-12)
23.15 0.2.0 (2014-12-02)
23.16 0.1.0 (2014-11-12)

Python Module Index

Index

151
151
151
151
153
153
153
153
154

155

157

175

181

183

185

187
187
187
189
190
190
191
191
192
192
193
193
193
193
194
194
195

197

199

CHAPTER
ONE

INTRODUCTION

zfp is an open-source library for representing multidimensional numerical arrays in compressed form to reduce storage
and bandwidth requirements. zfp consists of four main components:

* An efficient number format for representing small, fixed-size blocks of real values. The zfp format usually
provides higher accuracy per bit stored than conventional number formats like IEEE 754 floating point.

* A set of classes that implement storage and manipulation of a multidimensional array data type. zfp arrays
support high-speed read and write random access to individual array elements and are a drop-in replacement for
std: :vector and native C/C++ arrays. zfp arrays provide accessors like proxy pointers, iterators, and views.
zfp arrays allow specifying an exact memory footprint or an error tolerance.

* A C library for streaming compression of partial or whole arrays of integers or floating-point numbers,
e.g., for applications that read and write large data sets to and from disk. This library supports fast, parallel
(de)compression via OpenMP and CUDA.

* A command-line executable for compressing binary files of integer or floating-point arrays, e.g., as a substitute
for general-purpose compressors like gzip.

As a compressor, zfp is primarily lossy, meaning that the numerical values are usually only approximately represented,
though the user may specify error tolerances to limit the amount of loss. Fully lossless compression, where values are
represented exactly, is also supported.

zfp is primarily written in C and C++ but also includes Python and Fortran bindings. zfp is being developed at Lawrence
Livermore National Laboratory and is supported by the U.S. Department of Energy’s Exascale Computing Project. zfp
is a 2023 R&D 100 Award Winner.

1.1 Availability

zfp is freely available as open source on GitHub and is distributed under the terms of a permissive three-clause BSD
license. zfp may be installed using CMake or GNU Make. Installation from source code is recommended for users who
wish to configure the internals of zfp and select which components (e.g., programming models, language bindings) to
install.

zfp is also available through several package managers, including Conda (both C/C++ and Python packages are avail-
able), PIP, Spack, and MacPorts. Linux packages are available for several distributions and may be installed, for
example, using apt and yum.

https://www.llnl.gov
https://www.llnl.gov
https://www.exascaleproject.org
https://www.rdworldonline.com/2023-rd-100-award-winners/
https://github.com/LLNL/zfp
https://anaconda.org/conda-forge/zfp
https://anaconda.org/conda-forge/zfpy
https://pypi.org/project/zfpy
https://packages.spack.io/package.html?name=zfp
https://ports.macports.org/port/zfp/details/
https://repology.org/project/zfp/versions

zfp Documentation, Release 1.0.1

1.2 Application Support

zfp has been incorporated into several independently developed applications, plugins, and formats, such as
* Compressed file I/O in ADIOS.
* Compression codec in the BLOSC meta compressor.
» H5Z-ZFP plugin for HDF5®. zfp is also one of the select compressors shipped with HDE5 binaries.
* Compression functions for Intel® Integrated Performance Primitives.
* Compressed MPI messages in MVAPICH2-GDR.
* Compressed file I/O in Openlnventor™.
e Compression codec underlying the OpenZGY format.
* Compressed file I/O in TTK.
¢ Third-party module in VTK.
e Compression worklet in VTK-m.
* Compression codec in Zarr via numcodecs.

See this list for other software products that support zfp.

1.3 Usage

The typical user will interact with zfp via one or more of its components, specifically

* Via the C API when doing I/O in an application or otherwise performing data (de)compression online. High-
speed, parallel compression is supported via OpenMP and CUDA.

* Via zfp’s in-memory compressed-array classes when performing computations on very large arrays that demand
random access to array elements, e.g., in visualization, data analysis, or even in numerical simulation. These
classes can often substitute C/C++ arrays and STL vectors in applications with minimal code changes.

* Via the zfp command-line tool when compressing binary files offline.

* Via third-party 1/O libraries or tools that support zfp.

1.4 Technology

zfp compresses d-dimensional (1D, 2D, 3D, and 4D) arrays of integer or floating-point values by partitioning the array
into cubical blocks of 49 values, i.e., 4, 16, 64, or 256 values for 1D, 2D, 3D, and 4D arrays, respectively. Each such
block is independently compressed to a fixed- or variable-length bit string, and these bit strings may be concatenated
into a single stream of bits.

zfp usually truncates each per-block bit string to a fixed number of bits to meet a storage budget or to some variable
length needed to meet a given error tolerance, as dictated by the compressibility of the data. The bit string representing
any given block may be truncated at any point and still yield a valid approximation. The early bits are most important;
later bits progressively refine the approximation, similar to how the last few bits in a floating-point number have less
significance than the first several bits. The trailing bits can usually be discarded (zeroed) with limited impact on
accuracy.

zfp was originally designed for floating-point arrays only but has been extended to also support integer data, and
could for instance be used to compress images and quantized volumetric data. To achieve high compression ratios,

2 Chapter 1. Introduction

https://adios2.readthedocs.io/en/latest/operators/CompressorZFP.html
https://www.olcf.ornl.gov/center-projects/adios/
https://www.blosc.org/posts/support-lossy-zfp/
https://www.blosc.org
https://github.com/LLNL/H5Z-ZFP
https://www.hdfgroup.org/solutions/hdf5/
https://www.hdfgroup.org/downloads/hdf5/
https://www.intel.com/content/www/us/en/developer/articles/technical/parallel-compression-and-decompression-in-intel-integrated-performance-primitives-zfp-.html
https://software.intel.com/en-us/intel-ipp
https://doi.org/10.1109/IPDPS49936.2021.00053
https://mvapich.cse.ohio-state.edu/userguide/gdr/
https://www.openinventor.com/en/features/oil-gas-geoscience/zfp-compression/
https://www.openinventor.com
https://community.opengroup.org/osdu/platform/domain-data-mgmt-services/seismic/open-zgy/-/raw/master/doc/compress.html
https://community.opengroup.org/osdu/platform/domain-data-mgmt-services/seismic/open-zgy
https://topology-tool-kit.github.io/doc/html/TopologicalCompression_8cpp_source.html
https://topology-tool-kit.github.io
https://gitlab.kitware.com/vtk/vtk/tree/master/ThirdParty/zfp
https://vtk.org
http://m.vtk.org/documentation/namespacevtkm_1_1worklet_1_1zfp.html
http://m.vtk.org
https://numcodecs.readthedocs.io/en/stable/zfpy.html
https://github.com/zarr-developers/zarr-python
https://github.com/zarr-developers/numcodecs
https://computing.llnl.gov/projects/floating-point-compression/related-projects

zfp Documentation, Release 1.0.1

zfp generally uses lossy but optionally error-bounded compression. Bit-for-bit lossless compression is also possible
through one of zfp’s compression modes.

zfp works best for 2D-4D arrays that exhibit spatial correlation, such as continuous fields from physics simulations,
images, regularly sampled terrain surfaces, etc. Although zfp also provides support for 1D arrays, e.g., for audio signals
or even unstructured floating-point streams, the compression scheme has not been well optimized for this use case, and
compression ratio and quality may not be competitive with floating-point compressors designed specifically for 1D
streams.

In all use cases, it is important to know how to use zfp’s compression modes as well as what the limitations of zfp
are. Although it is not critical to understand the compression algorithm itself, having some familiarity with its major
components may help understand what to expect and how zfp’s parameters influence the result.

1.5 Resources

zfp is based on the algorithm described in the following paper:

Peter Lindstrom

“Fixed-Rate Compressed Floating-Point Arrays”

IEEE Transactions on Visualization and Computer Graphics
20(12):2674-2683, December 2014
doi:10.1109/TVCG.2014.2346458

zfp has evolved since the original publication; the algorithm implemented in the current version is described in:

James Diffenderfer, Alyson Fox, Jeffrey Hittinger, Geoffrey Sanders, Peter Lindstrom
“Error Analysis of ZFP Compression for Floating-Point Data”

SIAM Journal on Scientific Computing

41(3):A1867-A1898, 2019

doi:10.1137/18M 1168832

For more information on zfp, please see the zfp website. For bug reports, please consult the GitHub issue tracker. For
questions, comments, and requests, please contact us.

1.5. Resources 3

https://www.researchgate.net/publication/264417607_Fixed-Rate_Compressed_Floating-Point_Arrays
http://doi.org/10.1109/TVCG.2014.2346458
https://www.researchgate.net/publication/331162006_Error_Analysis_of_ZFP_Compression_for_Floating-Point_Data
http://doi.org/10.1137/18M1168832
http://zfp.llnl.gov
https://github.com/LLNL/zfp/issues
mailto:zfp@llnl.gov

zfp Documentation, Release 1.0.1

4 Chapter 1. Introduction

CHAPTER
TWO

LICENSE

Copyright (c) 2014-2023, Lawrence Livermore National Security, LLC
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the disclaimer
below.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the disclaimer
(as noted below) in the documentation and/or other materials provided with the distribution.

3. Neither the name of the LLNS/LLNL nor the names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL LAWRENCE LIVERMORE NATIONAL SECURITY, LLC, THE U.S. DEPARTMENT OF ENERGY OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFT-
WARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

2.1 Notice

This work was produced under the auspices of the U.S. Department of Energy by Lawrence Livermore National Lab-
oratory under Contract DE-AC52-07NA27344.

This work was prepared as an account of work sponsored by an agency of the United States Government. Neither
the United States Government nor Lawrence Livermore National Security, LLC, nor any of their employees makes
any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or Lawrence Livermore National Security, LLC.

zfp Documentation, Release 1.0.1

The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Gov-
ernment or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement
purposes.

6 Chapter 2. License

CHAPTER
THREE

INSTALLATION

zfp consists of four distinct parts: a compression library written in C, a set of C++ header files that implement com-
pressed arrays and corresponding C wrappers, optional Python and Fortran bindings, and a set of C and C++ examples
and utilities. The main compression codec is written in C and should conform to both the ISO C89 and C99 stan-
dards. The C++ array classes are implemented entirely in header files and can be included as is, but since they call the
compression library, applications must link with 1ibzfp.

zfp is preferably built using CMake, although the core library can also be built using GNU make on Linux, macOS,
and MinGW.

zfp conforms to various language standards, including C89, C99, C++98, C++11, and C++14.

Note: zfp requires compiler support for 64-bit integers.

3.1 CMake Builds

To build zfp using CMake on Linux or macOS, start a Unix shell and type:

cd zfp-1.0.1
mkdir build
cd build
cmake ..
make

To also build the examples, replace the cmake line with:

[cmake -DBUILD_EXAMPLES=ON ..

By default, CMake builds will attempt to locate and use OpenMP. To disable OpenMP, type:

[cmake -DZFP_WITH_OPENMP=OFF ..

To build zfp using Visual Studio on Windows, start a DOS shell and type:

cd zfp-1.0.1

mkdir build

cd build

cmake ..

cmake --build . --config Release

https://cmake.org
https://cmake.org
http://www.openmp.org

zfp Documentation, Release 1.0.1

This builds zfp in release mode. Replace ‘Release’ with ‘Debug’ to build zfp in debug mode. See the instructions for
Linux on how to change the cmake line to also build the example programs.

3.2 GNU Builds

To build zfp using gcc without OpenMP, type:

cd zfp-1.0.1
gmake

This builds 1ibzfp as a static library as well as the zfp command-line utility. To enable OpenMP parallel compression,
type:

[gmake ZFP_WITH_OPENMP=1 J

Note: GNU builds expose only limited functionality of zfp. For instance, CUDA and Python support are not included.
For full functionality, build zfp using CMake.

3.3 Testing

To test that zfp is working properly, type:

[ctest J
or using GNU make:
[gmake test J

If the GNU build or regression tests fail, it is possible that some of the macros in the file Config have to be adjusted.
Also, the tests may fail due to minute differences in the computed floating-point fields being compressed, which will
be indicated by checksum errors. If most tests succeed and the failures result in byte sizes and error values reasonably
close to the expected values, then it is likely that the compressor is working correctly.

3.4 Build Targets

To specify which components to build, set the macros below to ON (CMake) or 1 (GNU make), e.g.,

[Cmake -DBUILD_UTILITIES=OFF -DBUILD_EXAMPLES=ON ..]
or using GNU make
[gmake BUILD_UTILITIES=0 BUILD_EXAMPLES=1]

Regardless of the settings below, 1ibzfp will always be built.

BUILD_ALL
Build all subdirectories; enable all options (except BUILD_SHARED_LIBS). Default: off.

8 Chapter 3. Installation

https://gcc.gnu.org
http://www.openmp.org

zfp Documentation, Release 1.0.1

BUILD_CFP
Build 1libcfp for C bindings to the compressed-array classes. Default: off.

BUILD_ZFPY
Build zfPy for Python bindings to the C APIL.
CMake will attempt to automatically detect the Python installation to use. If CMake finds multiple Python

installations, it will use the newest one. To specify a specific Python installation to use, set PYTHON_LIBRARY
and PYTHON_INCLUDE_DIR on the cmake line:

cmake -DBUILD_ZFPY=ON -DPYTHON_LIBRARY=/path/to/lib/libpython2.7.so -DPYTHON_
. INCLUDE_DIR=/path/to/include/python2.7 ..

CMake default: off. GNU make default: off and ignored.

BUILD_ZFORP

Build 1ibzFORp for Fortran bindings to the C API. Requires Fortran standard 2018 or later. GNU make users
may specify the Fortran compiler to use via

Egmake BUILD_ZFORP=1 FC=/path/to/fortran-compiler]

Default: off.
BUILD_UTILITIES
Build z£fp command-line utility for compressing binary files. Default: on.
BUILD_EXAMPLES
Build code examples. Default: off.
BUILD_TESTING
Build testzfp tests. Default: on.
BUILD_TESTING_FULL
Build all unit tests. Default: off.

BUILD_SHARED_LIBS
Build shared objects (. so, .dylib, or .d11 files). CMake default: on. GNU make default: off.

Note: On macOS, add 0S=mac when building shared libraries with GNU make.

3.5 Configuration

The behavior of zfp can be configured at compile time via a set of macros in the same manner that build targets are
specified, e.g.,

[cmake -DZFP_WITH_OPENMP=OFF ..]

ZFP_INT64
ZFP_INT64_SUFFIX

ZFP_UINT64

3.5. Configuration 9

zfp Documentation, Release 1.0.1

ZFP_UINT64_SUFFIX

64-bit signed and unsigned integer types and their literal suffixes. Platforms on which long int is 32 bits
wide may require long long int as type and 11 as suffix. These macros are relevant only when compiling
in C89 mode. When compiling in C99 mode, integer types are taken from stdint.h. Defaults: long int, 1,
unsigned long int, and ul, respectively.

ZFP_WITH_OPENMP

CMake and GNU make macro for enabling or disabling OpenMP support. CMake builds will by default enable
OpenMP when available. Set this macro to 0 or OFF to disable OpenMP support. For GNU builds, OpenMP
is disabled by default. Set this macro to 1 or ON to enable OpenMP support. See also OMPFLAGS in Config
in case the compiler does not recognize -fopenmp. For example, Apple clang requires OMPFLAGS=-Xclang
-fopenmp, LDFLAGS=-1omp, and an installation of 1ibomp. CMake default: on. GNU make default: off.

ZFP_WITH_CUDA

CMake macro for enabling or disabling CUDA support for GPU compression and decompression. When en-
abled, CUDA and a compatible host compiler must be installed. For a full list of compatible compilers, please
consult the NVIDIA documentation. If a CUDA installation is in the user’s path, it will be automatically found
by CMake. Alternatively, the CUDA binary directory can be specified using the CUDA_BIN_DIR environment
variable. CMake default: off. GNU make default: off and ignored.

ZFP_ROUNDING_MODE

Experimental feature. By default, zfp coefficients are truncated, not rounded, which can result in biased errors
(see FAQ #30). To counter this, two rounding modes are available: ZFP_ROUND_FIRST (round during compres-
sion; analogous to mid-tread quantization) and ZFP_ROUND_LAST (round during decompression; analogous to
mid-riser quantization). With ZFP_ROUND_LAST, the values returned on decompression are slightly modified
(and usually closer to the original values) without impacting the compressed data itself. This rounding mode
works with all compression modes. With ZFP_ROUND_FIRST, the values are modified before compression, thus
impacting the compressed stream. This rounding mode tends to be more effective at reducing bias, but is in-
voked only with fixed-precision and fixed-accuracy compression modes. Both of these rounding modes break
the regression tests since they alter the compressed or decompressed representation, but they may be used with
libraries built with the default rounding mode, ZFP_ROUND_NEVER, and versions of zfp that do not support a
rounding mode with no adverse effects. Note: ZFP_ROUNDING_MODE is currently supported only by the serial
and omp execution policies. Default: ZFP_ROUND_NEVER.

ZFP_WITH_TIGHT_ERROR

Experimental feature. When enabled, this feature takes advantage of the error reduction associated with proper
rounding; see ZFP_ROUNDING_MODE. The reduced error due to rounding allows the tolerance in fixed-accuracy
mode to be satisfied using fewer bits of compressed data. As a result, when enabled, the observed maximum
absolute error is closer to the tolerance and the compression ratio is increased. This feature requires the rounding
mode to be ZFP_ROUND_FIRST or ZFP_ROUND_LAST and is supported only by the serial and omp execution
policies. Default: undefined/off.

ZFP_WITH_DAZ

When enabled, blocks consisting solely of subnormal floating-point numbers (tiny numbers close to zero) are
treated as blocks of all zeros (DAZ = denormals-are-zero). The main purpose of this option is to avoid the
potential for floating-point overflow in the zfp implementation that may occur in step 2 of the lossy compression
algorithm when converting to zfp’s block-floating-point representation (see Issue #119). Such overflow tends
to be benign but loses all precision and usually results in “random” subnormals upon decompression. When
enabled, compressed streams may differ slightly but are decompressed correctly by libraries built without this
option. This option may break some regression tests. Note: ZFP_WITH_DAZ is currently ignored by all execution
policies other than serial and omp. Default: undefined/off.

ZFP_WITH_ALIGNED_ALLOC

Use aligned memory allocation in an attempt to align compressed blocks on hardware cache lines. Default:
undefined/off.

10 Chapter 3. Installation

https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/
https://github.com/LLNL/zfp/issues/119

zfp Documentation, Release 1.0.1

ZFP_WITH_CACHE_TWOWAY

Use a two-way skew-associative rather than direct-mapped cache. This incurs some overhead that may be offset
by better cache utilization. Default: undefined/off.

ZFP_WITH_CACHE_FAST_HASH

Use a simpler hash function for cache line lookup. This is faster but may lead to more collisions. Default:
undefined/off.

ZFP_WITH_CACHE_PROFILE

Enable cache profiling to gather and print statistics on cache hit and miss rates. Default: undefined/off.

BIT_STREAM_WORD_TYPE

Unsigned integer type used for buffering bits. Wider types tend to give higher performance at the expense
of lower bit rate granularity. For portability of compressed files between little and big endian platforms,
BIT_STREAM_WORD_TYPE should be set to uint8. Default: uint64.

ZFP_BIT_STREAM_WORD_SIZE
CMake macro for indirectly setting BIT_STREAM_WORD_TYPE. Valid values are 8, 16, 32, 64. Default: 64.

BIT_STREAM_STRIDED

Enable support for strided bit streams that allow for non-contiguous memory layouts, e.g., to enable progressive
access. Default: undefined/off.

CFP_NAMESPACE

Macro for renaming the outermost cfp namespace, e.g., to avoid name clashes. Default: cfp.

PYTHON_LIBRARY

Path to the Python library, e.g., /usr/1ib/libpython2.7.so. CMake default: undefined/off. GNU make
default: off and ignored.

PYTHON_INCLUDE_DIR

Path to the Python include directory, e.g., /usr/include/python2.7. CMake default: undefined/off. GNU
make default: off and ignored.

3.6 Dependencies

The core zfp library and compressed arrays require only a C89 and C++98 compiler. The optional components have
additional dependencies, as outlined in the sections below.

3.6.1 CMake

CMake builds require version 3.9 or later. CMake is available here.

3.6.2 OpenMP

OpenMP support requires OpenMP 2.0 or later.

3.6. Dependencies 11

https://cmake.org

zfp Documentation, Release 1.0.1

3.6.3 CUDA

CUDA support requires CUDA 7.0 or later, CMake, and a compatible host compiler (see ZFP_IWITH_CUDA).

3.6.4 C/C++

The zfp C library and cfp C wrappers around the compressed-array classes conform to the C90 standard (ISO/IEC
9899:1990). The C++ classes conform to the C++98 standard (ISO/IEC 14882:1998).

3.6.5 Python

The optional Python bindings require CMake and the following minimum versions:
e Python: Python 2.7 & Python 3.5
e Cython: 0.22
e NumPy: 1.8.0

The necessary dependencies can be installed using pip and the zfp requirements. txt:

[pip install -r $ZFP_ROOT/python/requirements.txt

3.6.6 Fortran

The optional Fortran bindings require a Fortran 2018 compiler.

12 Chapter 3. Installation

https://www.iso.org/standard/17782.html
https://www.iso.org/standard/17782.html
https://www.iso.org/standard/25845.html

CHAPTER
FOUR

ALGORITHM

zfp uses two different algorithms to support lossy and lossless compression. These algorithms are described in detail
below.

4.1 Lossy Compression

The zfp lossy compression scheme is based on the idea of breaking a d-dimensional array into independent blocks of 44
values each, e.g., 4 x 4 x 4 values in three dimensions. Each block is compressed/decompressed entirely independently
from all other blocks. In this sense, zfp is similar to current hardware texture compression schemes for image coding
implemented on graphics cards and mobile devices.

The lossy compression scheme implemented in this version of zfp has evolved from the method described in the original
paper, and can conceptually be thought of as consisting of eight sequential steps (in practice some steps are consolidated
or exist only for illustrative purposes):

1.

The d-dimensional array is partitioned into blocks of dimensions 4¢. If the array dimensions are not multiples
of four, then blocks near the boundary are padded to the next multiple of four. This padding is invisible to the
application.

The independent floating-point values in a block are converted to what is known as a block-floating-point repre-
sentation, which uses a single, common floating-point exponent for all 4¢ values. The effect of this conversion
is to turn each floating-point value into a 31- or 63-bit signed integer. If the values in the block are all zero or
are smaller in magnitude than the fixed-accuracy tolerance (see below), then only a single bit is stored with the
block to indicate that it is “empty” and expands to all zeros. Note that the block-floating-point conversion and
empty-block encoding are not performed if the input data is represented as integers rather than floating-point
numbers.

The integers are decorrelated using a custom, high-speed, near orthogonal transform similar to the discrete cosine
transform used in JPEG image coding. The transform exploits separability and is implemented efficiently in-
place using the lifting scheme, requiring only 2.5 d integer additions and 1.5 d bit shifts by one per integer in d
dimensions. If the data is “smooth,” then this transform will turn most integers into small signed values clustered
around zero.

The signed integer coefficients are reordered in a manner similar to JPEG zig-zag ordering so that statistically
they appear in a roughly monotonically decreasing order. Coefficients corresponding to low frequencies tend to
have larger magnitude and are listed first. In 3D, coefficients corresponding to frequencies i, j, k in the three
dimensions are ordered by i + j + k first and then by i + j> + k.

The two’s complement signed integers are converted to their negabinary (base negative two) representation using
one addition and one bit-wise exclusive or per integer. Because negabinary has no single dedicated sign bit,
these integers are subsequently treated as unsigned. Unlike sign-magnitude representations, the leftmost one-
bit in negabinary simultaneously encodes the sign and approximate magnitude of a number. Moreover, unlike

13

zfp Documentation, Release 1.0.1

two’s complement, numbers small in magnitude have many leading zeros in negabinary regardless of sign, which
facilitates encoding.

6. The bits that represent the list of 49 integers are transposed so that instead of being ordered by coefficient they
are ordered by bit plane, from most to least significant bit. Viewing each bit plane as an unsigned integer, with
the lowest bit corresponding to the lowest frequency coefficient, the anticipation is that the first several of these
transposed integers are small, because the coeflicients are assumed to be ordered by magnitude.

7. The transform coefficients are compressed losslessly using embedded coding by exploiting the property that the
coeflicients tend to have many leading zeros that need not be encoded explicitly. Each bit plane is encoded in
two parts, from lowest to highest bit. First, the n lowest bits are emitted verbatim, where n is the smallest number
such that the 4¢ — n highest bits in all previous bit planes are all zero. Initially, n = 0. Then, a variable-length
representation of the remaining 4¢ — n bits, x, is encoded. For such an integer x, a single bit is emitted to indicate
if x = 0, in which case we are done with the current bit plane. If not, then bits of x are emitted, starting from
the lowest bit, until a one-bit is emitted. This triggers another test whether this is the highest set bit of x, and
the result of this test is output as a single bit. If not, then the procedure repeats until all m of x’s value bits have
been output, where 2™ < x < 2™. This can be thought of as a run-length encoding of the zeros of x, where the
run lengths are expressed in unary. The total number of value bits, n, in this bit plane is then incremented by m
before being passed to the next bit plane, which is encoded by first emitting its n lowest bits. The assumption
is that these bits correspond to n coefficients whose most significant bits have already been output, i.e., these n
bits are essentially random and not compressible. Following this, the remaining 4¢ — n bits of the bit plane are
run-length encoded as described above, which potentially results in n being increased.

As an example, x = 000001001101000 with m = 10 is encoded as 010011110110001, where the bits in boldface
indicate “group tests” that determine if the remainder of x (to the left) contains any one-bits. Again, this variable-
length code is generated and parsed from right to left.

8. The embedded coder emits one bit at a time, with each successive bit potentially improving the accuracy of the
approximation. The early bits are most important and have the greatest impact on accuracy, with the last few bits
providing very small changes. The resulting compressed bit stream can be truncated at any point and still allow
for a valid approximate reconstruction of the original block of values. The final step truncates the bit stream in
one of three ways: to a fixed number of bits (the fixed-rate mode); after some fixed number of bit planes have
been encoded (the fixed-precision mode); or until a lowest bit plane number has been encoded, as expressed in
relation to the common floating-point exponent within the block (the fixed-accuracy mode).

Various parameters are exposed for controlling the quality and compressed size of a block, and can be specified by the
user at a very fine granularity. These parameters are discussed /Zere.

4.2 Lossless Compression

The reversible (lossless) compression algorithm shares most steps with the lossy algorithm. The main differences are
steps 2, 3, and 8, which are the only sources of error. Since step 2 may introduce loss in the conversion to zfp’s block-
floating-point representation, the reversible algorithm adds a test to see if this conversion is lossless. It does so by
converting the values back to the source format and testing the result for bitwise equality with the uncompressed data.
If this test passes, then a modified decorrelating transform is performed in step 3 that uses reversible integer subtraction
operations only. Finally, step 8 is modified so that no one-bits are truncated in the variable-length bit stream. However,
all least significant bit planes with all-zero bits are truncated, and the number of encoded bit planes is recorded in step
7. As with lossy compression, a floating-point block consisting of all (“positive”) zeros is represented as a single bit,
making it possible to efficiently encode sparse data.

If the block-floating-point transform is not lossless, then the reversible compression algorithm falls back on a simpler
scheme that reinterprets floating-point values as integers via type punning. This lossless conversion from floating-
point to integer data replaces step 2, and the algorithm proceeds from there with the modified step 3. Moreover, this
conversion ensures that special values like infinities, NaNs, and negative zero are preserved.

The lossless algorithm handles integer data also, for which step 2 is omitted.

14 Chapter 4. Algorithm

CHAPTER
FIVE

COMPRESSION MODES

zfp accepts one or more parameters for specifying how the data is to be compressed to meet various constraints on
accuracy or size. At a high level, there are five different compression modes that are mutually exclusive: expert,
fixed-rate, fixed-precision, fixed-accuracy, and reversible mode. The user has to select one of these modes and its
corresponding parameters. In streaming I/O applications, the fixed-accuracy mode is preferred, as it provides the
highest quality (in the absolute error sense) per bit of compressed storage.

The zfp_stream struct encapsulates the compression parameters and other information about the compressed
stream. Its members should not be manipulated directly. Instead, use the access functions (see the C API sec-
tion) for setting and querying them. One can verify the active compression mode on a zfp_stream through
zfp_stream_compression_mode (). The members that govern the compression parameters are described below.

5.1 Expert Mode

The most general mode is the ‘expert mode,” which takes four integer parameters. Although most users will not directly
select this mode, we discuss it first since the other modes can be expressed in terms of setting expert mode parameters.

The four parameters denote constraints that are applied to each block in the compression algorithm. Compression is
terminated as soon as one of these constraints is not met, which has the effect of truncating the compressed bit stream
that encodes the block. The four constraints are as follows:

uint zfp_stream.minbits

The minimum number of compressed bits used to represent a block. Usually this parameter equals one bit, unless
each and every block is to be stored using a fixed number of bits to facilitate random access, in which case it
should be set to the same value as zfp_stream.maxbits.

uint zfp_stream.maxbits

The maximum number of bits used to represent a block. This parameter sets a hard upper bound on compressed
block size and governs the rate in fixed-rate mode. It may also be used as an upper storage limit to guard against
buffer overruns in combination with the accuracy constraints given by zfp_stream.maxprec and zfp_stream.
minexp.

uint zfp_stream.maxprec

The maximum number of bit planes encoded. This parameter governs the number of most significant uncom-
pressed bits encoded per transform coefficient. It does not directly correspond to the number of uncompressed
mantissa bits for the floating-point or integer values being compressed, but is closely related. This is the pa-
rameter that specifies the precision in fixed-precision mode, and it provides a mechanism for controlling the
relative error. Note that this parameter selects how many bits planes to encode regardless of the magnitude of
the common floating-point exponent within the block.

15

zfp Documentation, Release 1.0.1

int zfp_stream.minexp

The smallest absolute bit plane number encoded (applies to floating-point data only; this parameter is ignored
for integer data). The place value of each transform coefficient bit depends on the common floating-point ex-
ponent, e, that scales the integer coefficients. If the most significant coefficient bit has place value 2°, then the
number of bit planes encoded is (one plus) the difference between e and zfp_stream.minexp. As an analogy,
consider representing currency in decimal. Setting zfp_stream.minexp to -2 would, if generalized to base
10, ensure that amounts are represented to cent accuracy, i.e., in units of 102 = $0.01. This parameter governs
the absolute error in fixed-accuracy mode. Note that to achieve a certain accuracy in the decompressed values,
the zfp_stream.minexp value has to be conservatively lowered since zfp’s inverse transform may magnify the
error (see also FAQs #20-22).

Care must be taken to allow all constraints to be met, as encoding terminates as soon as a single constraint is violated
(except zfp_stream.minbits, which is satisfied at the end of encoding by padding zeros).

Warning: For floating-point data, the zfp_stream.maxbits parameter must be large enough to allow the com-
mon block exponent and any control bits to be encoded. This implies maxbits > 9 for single-precision data and
maxbits > 12 for double-precision data. Choosing a smaller value is of no use as it would prevent any fraction
(value) bits from being encoded, resulting in an all-zero decompressed block. More importantly, such a constraint
will not be respected by zfp for performance reasons, which if not accounted for could potentially lead to buffer
overruns.

As mentioned above, other combinations of constraints can be used. For example, to ensure that the compressed stream
is not larger than the uncompressed one, or that it fits within the amount of memory allocated, one may in conjunction
with other constraints set

[maxbits = 4+d * CHAR_BIT * sizeof(Type)

where Type is either float or double. The minbits parameter is useful only in fixed-rate mode; when minbits =
maxbits, zero-bits are padded to blocks that compress to fewer than maxbits bits.

The effects of the above four parameters are best explained in terms of the three main compression modes supported
by zfp, described below.

5.2 Fixed-Rate Mode

In fixed-rate mode, each d-dimensional compressed block of 4¢ values is stored using a fixed number of bits given by
the parameter zfp_stream.maxbits. This number of compressed bits per block is amortized over the 4¢ values to
give a rate in bits per value:

[rate = maxbits / 4/d

This rate is specified in the zfp executable via the -1 option, and programmatically via zfp_stream_set_rate(), as
a floating-point value. Fixed-rate mode can also be achieved via the expert mode interface by setting

minbits = maxbits = (1 << (2 * d)) * rate
maxprec = ZFP_MAX_PREC
minexp = ZFP_MIN_EXP

Note that each block stores a bit to indicate whether the block is empty, plus a common exponent. Hence zfp_stream.
maxbits must be at least 9 for single precision and 12 for double precision.

Fixed-rate mode is needed to support random access to blocks, and also is the mode used in the implementation of
zfp’s compressed arrays. Fixed-rate mode also ensures a predictable memory/storage footprint, but usually results in

16 Chapter 5. Compression Modes

zfp Documentation, Release 1.0.1

far worse accuracy per bit than the variable-rate fixed-precision and fixed-accuracy modes.

Note: Use fixed-rate mode only if you have to bound the compressed size or need read and write random access to
blocks.

5.3 Fixed-Precision Mode

In fixed-precision mode, the number of bits used to encode a block may vary, but the number of bit planes (i.e., the
precision) encoded for the transform coefficients is fixed. To achieve the desired precision, use option -p with the zfp
executable or call zfp_stream_set_precision(). In expert mode, fixed precision is achieved by specifying the
precision in zfp_stream.maxprec and fully relaxing the size constraints, i.e.,

minbits = ZFP_MIN_BITS
maxbits ZFP_MAX_BITS
maxprec = precision
minexp = ZFP_MIN_EXP

Fixed-precision mode is preferable when relative rather than absolute errors matter.

5.4 Fixed-Accuracy Mode

In fixed-accuracy mode, all transform coefficient bit planes up to a minimum bit plane number are encoded. (The
actual minimum bit plane is not necessarily zfp_stream.minexp, but depends on the dimensionality, d, of the data.
The reason for this is that the inverse transform incurs range expansion, and the amount of expansion depends on the
number of dimensions.) Thus, zfp_stream.minexp should be interpreted as the base-2 logarithm of an absolute error
tolerance. In other words, given an uncompressed value, f, and a reconstructed value, g, the absolute difference | f —
g | is at most 2™"*P_ (Note that it is not possible to guarantee error tolerances smaller than machine epsilon relative
to the largest value within a block.) This error tolerance is not always tight (especially for 3D and 4D arrays), but can
conservatively be set so that even for worst-case inputs the error tolerance is respected. To achieve fixed accuracy to
within ‘tolerance’, use option -a with the zfp executable or call zfp_stream_set_accuracy (). The corresponding
expert mode parameters are:

minbits = ZFP_MIN_BITS
maxbits ZFP_MAX_BITS
maxprec = ZFP_MAX_PREC
minexp = floor(log2(tolerance))

As in fixed-precision mode, the number of bits used per block is not fixed but is dictated by the data. Use folerance
= (to achieve near-lossless compression (see Reversible Mode for guaranteed lossless compression). Fixed-accuracy
mode gives the highest quality (in terms of absolute error) for a given compression rate, and is preferable when random
access is not needed.

Note: Fixed-accuracy mode is available for floating-point (not integer) data only.

5.3. Fixed-Precision Mode 17

zfp Documentation, Release 1.0.1

5.5 Reversible Mode

As of zfp 0.5.5, reversible (lossless) compression is supported. As with the other compression modes, each block is
compressed and decompressed independently, but reversible mode uses a different compression algorithm that ensures
a bit-for-bit identical reconstruction of integer and floating-point data. For IEEE-754 floating-point data, reversible
mode preserves special values such as subnormals, infinities, NaNs, and positive and negative zero.

The expert mode parameters corresponding to reversible mode are:

minbits = ZFP_MIN_BITS
maxbits = ZFP_MAX_BITS
maxprec = ZFP_MAX_PREC
minexp < ZFP_MIN_EXP

Reversible mode is enabled via zfp_stream_set_reversible() and through the -R command-line option in the 7/p
executable. It is supported by both the low- and high-level interfaces and by the serial and OpenMP execution policies,
but it is not yet implemented in CUDA.

18 Chapter 5. Compression Modes

CHAPTER
SIX

PARALLEL EXECUTION

As of zfp 0.5.3, parallel compression (but not decompression) is supported on multicore processors via OpenMP
threads. zfp 0.5.4 adds CUDA support for fixed-rate compression and decompression on the GPU.

Since zfp partitions arrays into small independent blocks, a large amount of data parallelism is inherent in the com-
pression scheme that can be exploited. In principle, concurrency is limited only by the number of blocks that make up
an array, though in practice each thread is responsible for compressing a chunk of several contiguous blocks.

Note: zfp parallel compression is confined to shared memory on a single compute node or GPU. No effort is made
to coordinate compression across distributed memory on networked compute nodes, although zfp’s fine-grained parti-
tioning of arrays should facilitate distributed parallel compression.

This section describes the zfp parallel compression algorithm and explains how to configure 1ibzfp and enable parallel
compression at run time via its high-level C API.

Note: Parallel compression is not supported via the low-level API, which ignores all execution policy settings and
always executes in serial.

6.1 Execution Policies

zfp supports multiple execution policies, which dictate how (e.g., sequentially, in parallel) and where (e.g., on the CPU
or GPU) arrays are compressed. Currently three execution policies are available: serial, omp, and cuda. The default
mode is serial, which ensures sequential compression on a single thread. The omp and cuda execution policies allow
for data-parallel compression on multiple threads.

The execution policy is set by zfp_stream_set_execution() and pertains to a particular zfp_stream. Hence, each
stream (and array) may use a policy suitable for that stream. For instance, very small arrays are likely best compressed
in serial, while parallel compression is best reserved for very large arrays that can take the most advantage of concurrent
execution.

As outlined in FAQ #23, the final compressed stream is independent of execution policy.

19

http://www.openmp.org
https://developer.nvidia.com/about-cuda

zfp Documentation, Release 1.0.1

6.2 Execution Parameters

Each execution policy allows tailoring the execution via its associated execution parameters. Examples include number
of threads, chunk size, scheduling, etc. The serial and cuda policies have no parameters. The subsections below
discuss the omp parameters.

Whenever the execution policy is changed via zfp_stream_set_execution(), its parameters (if any) are initialized
to their defaults, overwriting any prior setting.

6.2.1 OpenMP Thread Count

By default, the number of threads to use is given by the current setting of the OpenMP internal control variable nthreads-
var. Unless the calling thread has explicitly requested a thread count via the OpenMP API, this control variable usually
defaults to the number of threads supported by the hardware (e.g., the number of available cores).

To set the number of requested threads to be used by zfp, which may differ from the thread count of encapsulating or
surrounding OpenMP parallel regions, call zfp_stream_set_omp_threads().

The user is advised to call the zfp API functions to modify OpenMP behavior rather than make direct OpenMP calls.
For instance, use zfp_stream_set_omp_threads() rather than omp_set_num_threads(). To indicate that the
current OpenMP settings should be used, for instance as determined by the global OpenMP environment variable
OMP_NUM_THREADS, pass a thread count of zero (the default setting) to zfp_stream_set_omp_threads().

Note that zfp does not modify nthreads-var or other control variables but uses a num_threads clause on the OpenMP
#pragma line. Hence, no OpenMP state is changed and any subsequent OpenMP code is not impacted by zfp’s parallel
compression.

6.2.2 OpenMP Chunk Size

The d-dimensional array is partitioned into chunks, with each chunk representing a contiguous sequence of blocks of 44
array elements each. Chunks represent the unit of parallel work assigned to a thread. By default, the array is partitioned
so that each thread processes one chunk. However, the user may override this behavior by setting the chunk size (in
number of zfp blocks) via zfp_stream_set_omp_chunk_size(). See FAQ #25 for a discussion of chunk sizes and
parallel performance.

6.2.3 OpenMP Scheduling

zfp does not specify how to schedule chunk processing. The schedule used is given by the OpenMP def-sched-var
internal control variable. If load balance is poor, it may be improved by using smaller chunks, which may or may not
impact performance depending on the OpenMP schedule in use. Future versions of zfp may allow specifying how
threads are mapped to chunks, whether to use static or dynamic scheduling, etc.

20 Chapter 6. Parallel Execution

zfp Documentation, Release 1.0.1

6.3 Fixed- vs. Variable-Rate Compression

Following partitioning into chunks, zfp assigns each chunk to a thread. If there are more chunks than threads supported,
chunks are processed in unspecified order.

In variable-rate mode, there is no way to predict the exact number of bits that each chunk compresses to. Therefore, zfp
allocates a temporary memory buffer for each chunk. Once all chunks have been compressed, they are concatenated
into a single bit stream in serial, after which the temporary buffers are deallocated.

In fixed-rate mode, the final location of each chunk’s bit stream is known ahead of time, and zfp may not have to allocate
temporary buffers. However, if the chunks are not aligned on word boundaries, then race conditions may occur. In
other words, for chunk size C, rate R, and word size W, the rate and chunk size must be such that C x 49 x Ris a
multiple of W to avoid temporary buffers. Since W is a small power of two no larger than 64, this is usually an easy
requirement to satisfy.

When chunks are whole multiples of the word size, no temporary buffers are allocated and the threads write compressed
data directly to the target buffer. The CUDA implementation uses atomics to avoid race conditions, and therefore does
not need temporary buffers, regardless of chunk alignment.

6.4 Using OpenMP

In order to use OpenMP compression, zfp must be built with OpenMP support. If built with CMake, OpenMP support
is automatically enabled when available. To manually disable OpenMP support, see the ZFP_WITH_OPENMP macro.

To avoid compilation errors on systems with spotty OpenMP support (e.g., macOS), OpenMP is by default disabled in
GNU builds. To enable OpenMP, see GNU Builds and the ZFP_WITH_OPENMP macro.

6.5 Using CUDA

CUDA support is by default disabled. Enabling it requires an installation of CUDA and a compatible host compiler.
Furthermore, the ZFP_WITH_CUDA macro must be set and zfp must be built with CMake. See ZFP_WITH_CUDA for
further details.

6.5.1 Device Memory Management

The CUDA version of zfp supports both host and device memory. If device memory is allocated for fields or compressed
streams, this is automatically detected and handled in a consistent manner. For example, with compression, if host
memory pointers are provided for both the field and compressed stream, then device memory will transparently be
allocated and the uncompressed data will be copied to the GPU. Once compression completes, the compressed stream
is copied back to the host and device memory is deallocated. If both pointers are device pointers, then no copies are
made. Additionally, any combination of mixing host and device pointers is supported.

6.3. Fixed- vs. Variable-Rate Compression 21

zfp Documentation, Release 1.0.1

6.5.2 CUDA Limitations

The CUDA implementation has a number of limitations:
* Only the fixed-rate mode mode is supported. Other modes will be supported in a future release.
* 4D arrays are not supported.
* Headers are not supported. Any header already present in the stream will be silently overwritten on compression.
* zfp must be built with a ZFP_BIT_STREAM_WORD_SIZE of 64 bits.

e Although strides are supported, fields must be contiguous when stored in host memory, i.e., with
no unused memory addresses between the minimum and maximum address spanned by the field (see
zfp_field_is_contiguous()). This requirement avoids having to copy and allocate more temporary mem-
ory than needed to hold the array if it were not strided. Note that the strides can still be arbitrary as long as they
serve only to permute the array elements. Moreover, this restriction applies only to the CUDA execution policy
and the case where the uncompressed field resides on the host.

We expect to address these limitations over time.

6.6 Setting the Execution Policy

Enabling parallel compression at run time is often as simple as calling zfp_stream_set_execution()

if (zfp_stream_set_execution(stream, zfp_exec_omp)) {
// use OpenMP parallel compression

zfpsize = zfp_compress(stream, field);

}

before calling zfp_compress(). Replacing zfp_exec_omp with zfp_exec_cuda enables CUDA execution. If
OpenMP or CUDA is disabled or not supported, then the return value of functions setting these execution policies
and parameters will indicate failure. Execution parameters are optional and may be set using the functions discussed
above.

The source code for the zfp command-line tool includes further examples on how to set the execution policy. To use
parallel compression and decompression in this tool, see the -x command-line option.

Note: As of zfp 0.5.4, the execution policy refers to both compression and decompression. The OpenMP implemen-
tation does not yet support decompression, and hence zfp_decompress () will fail if the execution policy is not reset
to zfp_exec_serial before calling the decompressor. Similarly, the CUDA implementation supports only fixed-rate
mode and will fail if other compression modes are specified.

The following table summarizes which execution policies are supported with which compression modes:

22 Chapter 6. Parallel Execution

zfp Documentation, Release 1.0.1

(de)compression mode serial OpenMP CUDA
v

compression fixed rate
fixed precision
fixed accuracy
reversible

decompression fixed rate
fixed precision
fixed accuracy
reversible

N BN - BN BN -
N BN

zfp_compress () and zfp_decompress () both return zero if the current execution policy is not supported for the
requested compression mode.

6.7 Parallel Compression

Once the execution policy and parameters have been selected, compression is executed by calling zfp_compress ()
from a single thread. This function in turn inspects the execution policy given by the zfp_stream argument and
dispatches the appropriate function for executing compression.

6.8 Parallel Decompression

Parallel decompression is in principle possible using the same strategy as used for compression. However, in zfp’s
variable-rate modes, the compressed blocks do not occupy fixed storage, and therefore the decompressor needs to be
instructed where each compressed block resides in the bit stream to enable parallel decompression. Because the zfp
bit stream does not currently store such information, variable-rate parallel decompression is not yet supported, though
plans are to make such functionality available in the near future.

The CUDA implementation supports fixed-rate decompression. OpenMP fixed-rate decompression has been imple-
mented and will be released in the near future.

Future versions of zfp will allow efficient encoding of block sizes and/or offsets to allow each thread to quickly locate
the blocks it is responsible for decompressing, which will allow for variable-rate compression and decompression. Such
capabilities are already present in the implementation of the zfp read-only arrays.

6.7. Parallel Compression 23

zfp Documentation, Release 1.0.1

24 Chapter 6. Parallel Execution

CHAPTER
SEVEN

HIGH-LEVEL C API

The 1ibzfp C API provides functionality for sequentially compressing and decompressing whole integer and floating-
point arrays or single blocks. It is broken down into a high-level API and a low-level API. The high-level API handles
compression of entire arrays and supports a variety of back-ends (e.g., serial, OpenMP). The low-level API exists for
processing individual, possibly partial blocks as well as reduced-precision integer data less than 32 bits wide. Both C
APIs are declared in zfp . h.

The following sections are available:
* Macros
* Types
e Constants
e Functions

— Compressed Stream

Compression Parameters

Execution Policy

Compression Configuration

Array Metadata

— Compression and Decompression

7.1 Macros

ZFP_VERSION_MAJOR
ZFP_VERSION_MINOR
ZFP_VERSION_PATCH

ZFP_VERSION_TWEAK

Macros identifying the zfp library version (major.minor.patch.tweak). ZFP_VERSION_TWEAK is new as of zfp
1.0.0 and is used to mark intermediate develop versions (unofficial releases).

25

zfp Documentation, Release 1.0.1

ZFP_VERSION_DEVELOP

Macro signifying that the current version is an intermediate version that differs from the last official release. This
macro is undefined for official releases; when defined, its value equals 1. Note that this macro may be defined
even if the four version identifiers have not changed. Available as of zfp 1.0.0.

ZFP_VERSION

A single integer constructed from the four version identifiers. This integer can be gener-
ated by ZFP_MAKE_VERSION or ZFP_MAKE_FULLVERSION. Its value equals the global constant
zfp_library_version.

Note: Although ZFP_VERSION increases monotonically with release date and with the four version identifiers it
depends on, the mapping to ZFP_VERSION changed with the introduction of ZFP_VERSION_TWEAK in zfp 1.0.0.

Going forward, we recommend using ZFP_MAKE_VERSION or ZFP_MAKE_FULLVERSION in conditional code that de-
pends on ZFP_VERSION, e.g., #if ZFP_VERSION >= ZFP_MAKE_VERSION(1, 0, 0). Note that such constructions
should not be used with older versions of zfp, e.g., if (zfp_library_version == ZFP_MAKE_VERSION(O®, 5,
5)) will not give the expected result with binary versions of 1ibzfp before version 1.0.0.

ZFP_VERSION_STRING

ZFP_VERSION_STRING is a string literal composed of the four version identifiers. It is a component of
zfp_version_string.

ZFP_MAKE_VERSION (major, minor, patch)

ZFP_MAKE_VERSION_STRING(major, minor, patch)

Utility macros for constructing ZFP_VERSION and ZFP_VERSION_STRING, respectively. Available as of zfp
1.0.0, these macros may be used by applications to test for a certain zfp version number, e.g., #1f ZFP_VERSION
>= ZFP_MAKE_VERSION(1, 0, 0).

ZFP_MAKE_FULLVERSION (major, minor, patch, tweak)

ZFP_MAKE_FULLVERSION_STRING(major, minor, patch, tweak)

Utility macros for constructing ZFP_VERSION and ZFP_VERSION_STRING, respectively. Includes tweak version
used by intermediate develop versions. Available as of zfp 1.0.0, these macros may be used by applications to
test for a certain zfp version number, e.g., #if ZFP_VERSION >= ZFP_MAKE_FULLVERSION(1, 0, 0, 2).

ZFP_CODEC
Macro identifying the version of the compression CODEC. See also zfp_codec_version.

ZFP_MIN_BITS
ZFP_MAX_BITS

ZFP_MAX_PREC

26 Chapter 7. High-Level C API

zfp Documentation, Release 1.0.1

ZFP_MIN_EXP

Default compression parameter settings that impose no constraints. The largest possible compressed block size,
corresponding to 4D blocks of doubles, is given by ZFP_MAX_BITS. See also zfp_stream.

ZFP_META_NULL

Null representation of the 52-bit encoding of field metadata. This value is returned by zfp_field_metadata()
when the field metadata cannot be encoded in 64 bits, such as when the array dimensions are too large (see
Limitations). In addition to signaling error, this value is guaranteed not to represent valid metadata.

The ZFP_HEADER bit mask specifies which portions of a header to output (if any). The constants below should be bitwise
ORed together. Use ZFP_HEADER_FULL to output all header information available. The compressor and decompressor
must agree on which parts of the header to read/write. See zfp_read_header () and zfp_write_header () for how
to read and write header information.

ZFP_HEADER_MAGIC

Magic constant that identifies the data as a zfp stream compressed using a particular CODEC version.
ZFP_HEADER_META

Array size and scalar type information stored in the zfp_field struct.
ZFP_HEADER_MODE

Compression mode and parameters stored in the zfp_stream struct.

ZFP_HEADER_FULL
Full header information (bitwise OR of all ZFP_HEADER constants).

ZFP_MAGIC_BITS
ZFP_META_BITS
ZFP_MODE_SHORT_BITS
ZFP_MODE_LONG_BITS
ZFP_HEADER_MAX_BITS

ZFP_MODE_SHORT_MAX

Number of bits used by each portion of the header. These macros are primarily informational and should not
be accessed by the user through the high-level API. For most common compression parameter settings, only
ZFP_MODE_SHORT_BITS bits of header information are stored to encode the mode (see zfp_stream_mode()).

The ZFP_DATA bit mask specifies which portions of array data structures to compute total storage size for. These
constants should be bitwise ORed together. Use ZFP_DATA_ALL to count all storage used.

ZFP_DATA_UNUSED
Allocated but unused data.

ZFP_DATA_PADDING

Padding for alignment purposes.

7.1. Macros 27

zfp Documentation, Release 1.0.1

ZFP_DATA_META

Class members and other fixed-size storage.

ZFP_DATA_MISC

Miscellaneous uncategorized storage.

ZFP_DATA_PAYLOAD

Compressed data encoding array elements.

ZFP_DATA_INDEX

Block index information.

ZFP_DATA_CACHE

Uncompressed cached data.
ZFP_DATA_HEADER
Header information.

ZFP_DATA_ALL
All storage (bitwise OR of all ZFP_DATA constants).

ZFP_ROUND_FIRST
ZFP_ROUND_NEVER

ZFP_ROUND_LAST

Available rounding modes for ZFP_ROUNDING_MODE, which specifies at build time how zfp performs rounding
in lossy compression mode.

7.2 Types

type zfp_stream

The zfp_stream struct encapsulates all information about the compressed stream for a single block or a collec-
tion of blocks that represent an array. See the section on compression modes for a description of the members of
this struct.

typedef struct {

uint minbits; // minimum number of bits to store per block

uint maxbits; // maximum number of bits to store per block

uint maxprec; // maximum number of bit planes to store

int minexp; // minimum floating point bit plane number to store

bitstream® stream; // compressed bit stream
zfp_execution exec; // execution policy and parameters
} zfp_stream;

type zfp_execution

The zfp_stream also stores information about how to execute compression, e.g., sequentially or in parallel.
The execution is determined by the policy and any policy-specific parameters such as number of threads.

28 Chapter 7. High-Level C API

zfp Documentation, Release 1.0.1

typedef struct {
zfp_exec_policy policy; // execution policy (serial, omp, cuda, ...)
void* params; // execution parameters

} zfp_execution;

Warning: As of zfp 1.0.0 zfp_execution replaces the former zfp_exec_params with a void* to the associated
zfp_exec_params type (e.g., zfp_exec_params_omp) to limit ABI-breaking changes due to future extensions to
zfp execution policies.

type zfp_exec_policy

Currently three execution policies are available: serial, OpenMP parallel, and CUDA parallel.

typedef enum {
zfp_exec_serial = 0, // serial execution (default)
zfp_exec_omp 1, // OpenMP multi-threaded execution
zfp_exec_cuda = 2 // CUDA parallel execution

} zfp_exec_policy;

type zfp_exec_params_omp

Execution parameters for OpenMP parallel compression. These are initialized to default values. When nonzero,
they indicate the number of threads to request for parallel compression and the number of consecutive blocks to
assign to each thread.

typedef struct {
uint threads; // number of requested threads
uint chunk_size; // number of blocks per chunk
} zfp_exec_params_omp;

type zfp_mode
Enumerates the compression modes.

typedef enum {
zfp_mode_null = 0, // an invalid configuration of the 4 params
zfp_mode_expert =1, // expert mode (4 params set manually)
zfp_mode_fixed_rate = 2, // fixed rate mode
zfp_mode_fixed_precision = 3, // fixed precision mode
zfp_mode_fixed_accuracy = 4, // fixed accuracy mode
zfp_mode_reversible =5 // reversible (lossless) mode

} zfp_mode;

type zfp_config

Encapsulates compression mode and parameters (if any).

7.2. Types 29

zfp Documentation, Release 1.0.1

rtypedef struct {
zfp_mode mode; // compression mode */
union {
double rate; // compressed bits/value (negative for word alignment)
uint precision; // uncompressed bits/value
double tolerance; // absolute error tolerance
struct {
uint minbits; // min number of compressed bits/block
uint maxbits; // max number of compressed bits/block
uint maxprec; // max number of uncompressed bits/value
int minexp; // min floating point bit plane number to store
} expert; // expert mode arguments
} arg; // arguments corresponding to compression mode
} zfp_config;

type zfp_type
Enumerates the scalar types supported by the compressor and describes the uncompressed array. The compressor
and decompressor must use the same zfp_type, e.g., one cannot compress doubles and decompress to floats or
integers.

(typedef enum {
zfp_type_none = 0, // unspecified type
zfp_type_int32 1, // 32-bit signed integer
zfp_type_int64 2, // 64-bit signed integer
zfp_type_float = 3, // single precision floating point
zfp_type_double = 4 // double precision floating point
} zfp_type;

type zfp_field

The uncompressed array is described by the zfp_field struct, which encodes the array’s scalar type, dimen-
sions, and memory layout.

typedef struct {
zfp_type type; // scalar type (e.g., int32, double)
size_t nx, ny, nz, nw; // sizes (zero for unused dimensions)
ptrdiff_t sx, sy, sz, sw; // strides (zero for contiguous array a[nw][nz][ny][nx])
void* data; // pointer to array data
} zfp_£field;

For example, a static multidimensional C array declared as

[double array[nl] [n2][n3] [n4];

would be described by a zfp_field with members

type = zfp_type_double;

nx = n4; ny = n3; nz = n2; nw = nl;

SX = 1; sy = n4; sz = n3 * n4; sw = n2 * n3 * n4;
data = &array[0][0][0][0];

30 Chapter 7. High-Level C API

zfp Documentation, Release 1.0.1

The strides, when nonzero, specify how the array is laid out in memory. Strides can be used in case multiple fields
are stored interleaved via “array of struct” (AoS) rather than “struct of array” (SoA) storage, or if the dimensions
should be transposed during (de)compression. Strides may even be negative, allowing one or more dimensions
to be traversed in reverse order. Given 4D array indices (x, y, z, w), the corresponding array element is stored at

[data[x *SX +y *sy+z*sz+w* sw]

where data is a pointer to the first array element.

Warning: The zfp_field struct was modified in zfp 1.0.0 to use size_t and ptrdiff_t for array dimensions
and strides, respectively, to support 64-bit addressing of very large arrays (previously, uint and int were used).
This ABI incompatible change may require rebuilding applications that use zfp and may in some cases also require
code changes to handle pointers to size_t instead of pointers to uint (see zfp_field_size(), for instance).

Warning: It is paramount that the field dimensions, nx, ny, nz, and nw, and strides, sx, sy, sz, and sw, be correctly
mapped to how the uncompressed array is laid out in memory. Although compression will still succeed if array
dimensions are accidentally transposed, compression ratio and/or accuracy may suffer greatly. Since the leftmost
index, x, is assumed to vary fastest, zfp can be thought of as assuming Fortran ordering. For C ordered arrays, the
user should transpose the dimensions or specify strides to properly describe the memory layout. See this FAQ for
further details.

type zfp_bool

zfp_bool is new as of zfp 1.0.0. Although merely an alias for int, this type serves to document that a return
value or function parameter should be treated as Boolean. Two enumerated constants are available:

enum {
zfp_false = 0,
zfp_true = !zfp_false
It

The reason why zfp_bool is not an enumerated type itself is that in C++ this would require
an explicit cast between the bool type resulting from logical expressions, e.g., zfp_bool done =
static_cast<zfp_bool>(queue.empty() && work == 0). Such casts from bool to a non-enumerated
int are not necessary.

The zfp 1.0.0 API has changed to use zfp_bool in place of int where appropriate; this change should not affect
existing code.

7.3 Constants

const uint z£fp_codec_version

The version of the compression CODEC implemented by this version of the zfp library. The library can de-
compress files generated by the same CODEC only. To ensure that the zfp .h header matches the binary library
linked to, zfp_codec_version should match ZFP_CODEC.

const uint zfp_library_version

The library version. The binary library and headers are compatible if zfp_library_version matches
ZFP_VERSION.

7.3. Constants 31

zfp Documentation, Release 1.0.1

const char *const zfp_version_string

A constant string representing the zfp library version and release date. One can search for this string in executables
and libraries that link to 1ibzfp when built as a static library.

7.4 Functions

size_t zfp_type_size (z/p_type type)
Return byte size of the given scalar type, e.g., zfp_type_size(zfp_type_float) = 4.

7.4.1 Compressed Stream

7fp_stream *zfp_stream_open (bitstream *stream)

Allocate compressed stream and associate it with bit stream for reading and writing bits to/from memory. stream
may be NULL and attached later via zfp_stream_set_bit_stream().

void zfp_stream_close (z/p_stream *stream)

Close and deallocate compressed stream. This does not affect the attached bit stream.

void zfp_stream_rewind(z/p_stream *stream)

Rewind bit stream to beginning for compression or decompression.

bitstream *zfp_stream_bit_stream(const z/p_stream *stream)
Return bit stream associated with compressed stream (see zfp_stream_set_bit_stream()).

void zfp_stream_set_bit_stream(z/p_stream *stream, bitstream *bs)

Associate bit stream with compressed stream.

size_t zfp_stream_compressed_size (const zfp_stream *stream)

Number of bytes of compressed storage. This function returns the current byte offset within the bit stream from
the beginning of the bit stream memory buffer. To ensure all buffered compressed data has been output call
zfp_stream_flush() first.

size_t zfp_stream_maximum_size (const zfp_stream *stream, const zfp_field *field)

Conservative estimate of the compressed byte size for the compression parameters stored in stream and the array
whose scalar type and dimensions are given by field. This function may be used to determine how large a memory
buffer to allocate to safely hold the entire compressed array. The buffer may then be resized (using realloc())
after the actual number of bytes is known, as returned by zfp_compress ().

32 Chapter 7. High-Level C API

zfp Documentation, Release 1.0.1

7.4.2 Compression Parameters

zfp_mode z£fp_stream_compression_mode (const 7fp_stream *stream)

Return compression mode associated with compression parameters. Return z£fp_mode_null when compression
parameters are invalid.

void zfp_stream_set_reversible (z/p_stream *stream)
Enable reversible (lossless) compression.

double zfp_stream_rate(const zfp_stream *stream, uint dims)

Return rate in compressed bits per value if stream is in fixed-rate mode (see zfp_stream_set_rate()), else
zero. dims is the dimensionality of the compressed data.

double zfp_stream_set_rate(zfp_stream *stream, double rate, zfp_type type, uint dims, zfp_bool align)

Set rate for fixed-rate mode in compressed bits per value. The target scalar type and array dimensionality are
needed to correctly translate the rate to the number of bits per block. The Boolean align should be zfp_true
if word alignment is needed, e.g., to support random access writes of blocks for zfp’s compressed arrays. Such
alignment may further constrain the rate. The closest supported rate is returned, which may differ from the
requested rate.

uint zfp_stream_precision(const zfp_stream *stream)

Return precision in uncompressed bits per value if stream is in fixed-precision mode (see
zfp_stream_set_precision()), else zero.

uint zfp_stream_set_precision(zfp_stream *stream, uint precision)

Set precision for fixed-precision mode. The precision specifies how many uncompressed bits per value to store,
and indirectly governs the relative error. The actual precision is returned, e.g., in case the desired precision is out
of range. To preserve a certain floating-point mantissa or integer precision in the decompressed data, see FAQ
#21.

double zfp_stream_accuracy (const zfp_stream *stream)

Return accuracy as an absolute error tolerance if stream is in fixed-accuracy mode (see
zfp_stream_set_accuracy()), else zero.

double zfp_stream_set_accuracy (z/p_stream *stream, double tolerance)

Set absolute error folerance for fixed-accuracy mode. The tolerance ensures that values in the decompressed
array differ from the input array by no more than this tolerance (in all but exceptional circumstances; see FAQ
#17). This compression mode should be used only with floating-point (not integer) data.

7.4. Functions 33

zfp Documentation, Release 1.0.1

uint64 z£fp_stream_mode (const zfp_stream *stream)

Return compact encoding of compression parameters. If the return value is no larger than
ZFP_MODE_SHORT_MAX, then the least significant ZFP_MODE_SHORT_BITS (12 in the current version)
suffice to encode the parameters. Otherwise all 64 bits are needed, and the low ZFP_MODE_SHORT_BITS bits
will be all ones. Thus, this variable-length encoding can be used to economically encode and decode the
compression parameters, which is especially important if the parameters are to vary spatially over small regions.
Such spatially adaptive coding would have to be implemented via the low-level API.

zfp_mode z£fp_stream_set_mode (z/p_stream *stream, uint64 mode)
Set all compression parameters from compact integer representation. See zfp_stream_mode () for how to
encode the parameters. Return the mode associated with the newly-set compression parameters. If the decoded
compression parameters are invalid, they are not set and the function returns zfp_mode_null.

void zfp_stream_params (const zfp_stream *stream, uint *minbits, uint *maxbits, uint *maxprec, int *minexp)
Query compression parameters. For any parameter not needed, pass NULL for the corresponding pointer.

7fp_bool z£fp_stream_set_params (7/p_stream *stream, uint minbits, uint maxbits, uint maxprec, int minexp)

Set all compression parameters directly. See the section on expert mode for a discussion of the parameters. The
return value is zfp_true upon success.

7.4.3 Execution Policy

7fp_exec_policy zfp_stream_execution(const zfp_stream *stream)

Return current execution policy.

uint zfp_stream_omp_threads (const 7fp_stream *stream)
Return number of OpenMP threads to request for compression. See zfp_stream_set_omp_threads().

uint zfp_stream_omp_chunk_size (const 7/p_stream *stream)

Return number of blocks to compress together per OpenMP thread. See
zfp_stream_set_omp_chunk_size().

7fp_bool zfp_stream_set_execution(zfp_stream *stream, 7fp_exec_policy policy)
Set execution policy. If different from the previous policy, initialize the execution parameters to their default
values. z£fp_true is returned if the execution policy is supported.

7fp_bool zfp_stream_set_omp_threads (zfp_stream *stream, uint threads)
Set the number of OpenMP threads to use during compression. If threads is zero, then the number of threads
is given by the value of the OpenMP nthreads-var internal control variable when zfp_compress() is called
(usually the maximum number available). This function also sets the execution policy to OpenMP. Upon success,
zfp_true is returned.

zfp_bool zfp_stream_set_omp_chunk_size (z/p_stream *stream, uint chunk_size)

Set the number of consecutive blocks to compress together per OpenMP thread. If zero, use one chunk per thread.
This function also sets the execution policy to OpenMP. Upon success, zfp_true is returned.

34 Chapter 7. High-Level C API

zfp Documentation, Release 1.0.1

7.4.4 Compression Configuration

These functions encode a desired compression mode and associated parameters (if any) in a single struct, e.g., for
configuring zfp’s read-only array classes.
7fp_config zfp_config_none ()

Unspecified configuration.

7fp_config zfp_config_rate (double rate, zfp_bool align)

Fixed-rate mode using rate compressed bits per value. When align is true, word alignment is enforced to further
constrain the rate (see zfp_stream_set_rate()).

7fp_config zfp_config_precision(uint precision)

Fixed-precision mode using precision uncompressed bits per value (see also zfp_stream_set_precision()).

zfp_config zfp_config_accuracy (double tolerance)

Fixed-accuracy mode with absolute error no larger than folerance (see also zfp_stream_set_accuracy()).

7fp_config zfp_config_reversible()
Reversible (lossless) mode (see also zfp_stream_set_reversible()).

7fp_config zfp_config_expert (uint minbits, uint maxbits, uint maxprec, int minexp)

Expert mode with given parameters (see also zfp_stream_set_params()).

7.4.5 Array Metadata

7fp_field *zfp_~field_alloc()

Allocates and returns a default initialized zfp_field struct. The caller must free this struct using
zfp_field _free().

7fp_field *z£fp_~Field_1d(void *pointer, zfp_type type, size_t nx)

Allocate and return a field struct that describes an existing 1D array, a[nx], of nx uncompressed scalars of given
type stored at pointer, which may be NULL and specified later.

7fp_field *z£fp_f£field_2d(void *pointer, zfp_type type, size_t nx, size_t ny)

Allocate and return a field struct that describes an existing 2D array, a[ny] [nx], of nx X ny uncompressed
scalars of given type stored at pointer, which may be NULL and specified later.

7.4. Functions 35

zfp Documentation, Release 1.0.1

7fp_field *z£fp_~Ffield_3d(void *pointer, zfp_type type, size_t nx, size_t ny, size_t nz)

Allocate and return a field struct that describes an existing 3D array, a[nz] [ny] [nx], of nx X ny X nz uncom-
pressed scalars of given fype stored at pointer, which may be NULL and specified later.

7fp_field *z£fp_fFfield_4d(void *pointer, zfp_type type, size_t nx, size_t ny, size_t nz, size_t nw)

Allocate and return a field struct that describes an existing 4D array, a[nw] [nz] [ny] [nx], of nx X ny X nz X
nw uncompressed scalars of given type stored at pointer, which may be NULL and specified later.

void zfp_field_free(z/p_field *field)
Free zfp_field struct previously allocated by one of the functions above.

void *zfp_field_pointer (const z/p_field *field)

Return pointer to the first scalar in the field with index x=y =z =w =0.

void *zfp_field_begin(const z/p_field *field)

Return pointer to the lowest memory address occupied by the field. Equals zfp_field_pointer() if all strides
are positive. Available since zfp 1.0.0.

zfp_type zfp_f£field_type (const zfp_field *field)

Return array scalar type.

uint zfp_field_precision(const zfp_field *field)
Return scalar precision in number of bits, e.g., 32 for zfp_type_float.

uint zfp_field_dimensionality(const z/p_field *field)

Return array dimensionality (1, 2, 3, or 4).

size_t zfp_field_size(const zfp_field *field, size_t *size)

Return total number of scalars stored in the array, e.g., nx X ny X nz for a 3D array. If size is not NULL, then
store the number of scalars for each dimension, e.g., size[0] = nx; size[l] = ny; size[2] = nzfora
3D array.

size_t zfp_field_size_bytes(const zfp_field *field)

Return number of bytes spanned by the field payload data. This includes gaps in memory in case the field layout,
as given by the strides, is not contiguous (see zfp_field_is_contiguous()). Available since zfp 1.0.0.

36 Chapter 7. High-Level C API

zfp Documentation, Release 1.0.1

size_t zfp_field_blocks (const z/p_field *field)

Return total number of d-dimensional blocks (whether partial or whole) spanning the array. Each whole block
consists of 4¢ scalars. Available since zfp 1.0.0.

7fp_bool z£fp_field_stride (const 7fp_field *field, ptrdiff_t *stride)

Return zfp_false if the array is stored contiguously as a[nx], a[ny][nx], a[nz][ny][nx], or
a[nw] [nz] [ny] [nx] depending on dimensionality. Return z£fp_true if the array is strided and laid out dif-
ferently in memory. If stride is not NULL, then store the stride for each dimension, e.g., stride[0] = sx;
stride[1] = sy; stride[2] = sz; for a 3D array. See zfp_field for more information on strides.
Return false if the array is stored contiguously (the default) as a[nx], a[ny][nx], a[nz] [ny][nx], or
a[nw] [nz] [ny] [nx] depending on dimensionality. Return true if nonzero strides have been specified.

7fp_bool zfp_£field_is_contiguous (const zfp_field *field)

Return true if the field occupies a contiguous portion of memory. Note that the field layout may be contiguous
even if a raster order traversal does not visit memory in a monotonically increasing or decreasing order, e.g., if
the layout is simply a permutation of the default layout. Available since zfp 1.0.0.

uint64 z£fp_field_metadata(const zfp_field *field)

Return 52-bit compact encoding of the scalar type and array dimensions. This function returns ZFP_META_NULL
on failure, e.g., if the array dimensions are oo large to be encoded in 52 bits.

void zfp_field_set_pointer (zfp_field *field, void *pointer)
Set pointer to first scalar in the array.

7fp_type zfp_field_set_type(zfp_field *field, zfp_type type)
Set array scalar type.

void zfp_field_set_size_1d(zfp_field *field, size_t nx)
Specify dimensions of 1D array a[nx].

void zfp_field_set_size_2d(z/p_field *field, size_t nx, size_t ny)
Specify dimensions of 2D array a[ny] [nx].

void zfp_field_set_size_3d(zfp_field *field, size_t nx, size_t ny, size_t nz)
Specify dimensions of 3D array a[nz] [ny] [nx].

void zfp_field_set_size_4d(zfp_field *field, size_t nx, size_t ny, size_t nz, size_t nw)
Specify dimensions of 4D array a[nw] [nz] [ny] [nx].

7.4. Functions 37

zfp Documentation, Release 1.0.1

void zfp_field_set_stride_1d(zfp_field *field, ptrdiff_t sx)
Specify stride for 1D array: sx = &a[1] - &a[0].

void zfp_field_set_stride_2d(zfp_field *field, ptrdiff_t sx, ptrdiff_t sy)
Specify strides for 2D array: sx = &a[0][1] - &a[0][0]; sy = &a[1]1[0] - &a[0][O].

void zfp_field_set_stride_3d(zfp_field *field, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz)
Specify strides for 3D array: sx = &a[0][0]1[1] - &a[0][0]1[0]; sy = &a[0][1][0] - &a[®][0][0];
sz = &a[1][0]1[0] - &a[0][0][0].

void zfp_field_set_stride_4d(zfp_field *field, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz, ptrdiff_t sw)
Specify strides for 4D array: sx = &a[0]J[0][0]1[1] - &a[0I[0]J[0][0]; sy = &a[0]1[0]1[1][0]
- &a[0][0][0][0]; sz = &a[0]J[1]1[0][0] - &a[0][0][0][0]; sw = &a[1][0][0][0] -
&a[0][0][0][0].

7fp_bool zfp_field_set_metadata(z/p_field *field, uint64 meta)

Specify array scalar type and dimensions from compact 52-bit representation. Return z£fp_true upon success.
See zfp_field_metadata() for how to encode meta.

7.4.6 Compression and Decompression

size_t zfp_compress (zfp_stream *stream, const zfp_field *field)
Compress the whole array described by field using parameters given by stream. Then flush the stream to emit
any buffered bits and align the stream on a word boundary. The resulting byte offset within the bit stream is
returned, which equals the total number of bytes of compressed storage if the stream was rewound before the
zfp_compress () call. Zero is returned if compression failed.

size_t zfp_decompress (z/p_stream *stream, zfp_field *field)

Decompress from stream to array described by field and align the stream on the next word boundary. Upon
success, the nonzero return value is the same as would be returned by a corresponding zfp_compress () call,
i.e., the current byte offset or the number of compressed bytes consumed. Zero is returned if decompression
failed.

size_t zfp_write_header (zfp_stream *stream, const zfp_field *field, uint mask)

Write an optional variable-length header to the stream that encodes compression parameters, array metadata, etc.
The header information written is determined by the bit mask (see macros). Unlike in zfp_compress (), no
word alignment is enforced. See the /imitations section for limits on the maximum array size supported by the
header. The return value is the number of bits written, or zero upon failure.

size_t zfp_read_header (zfp_stream *stream, zfp_field *field, uint mask)

Read header if one was previously written using zfp_write_header (). The stream and field data structures
are populated with the information stored in the header, as specified by the bit mask (see macros). The caller
must ensure that mask agrees between header read and write calls. The return value is the number of bits read,
or zero upon failure.

38 Chapter 7. High-Level C API

CHAPTER
EIGHT

LOW-LEVEL C API

The 1ibzfp low-level C API provides functionality for compressing individual d-dimensional blocks of up to 4¢ values.
If a block is not complete, i.e., contains fewer than 4¢ values, then zfp’s partial block support should be favored over
padding the block with, say, zeros or other fill values. The blocks (de)compressed need not be contiguous and can be
gathered from or scattered to a larger array by setting appropriate strides. As of zfp 1.0.0, templated C++ wrappers are
also available to simplify calling the low-level API from C++. The C API is declared in z£fp.h; the C++ wrappers are
found in zfp.hpp.

Note: Because the unit of parallel work in zfp is a block, and because the low-level API operates on individual blocks,
this API supports only the the serial execution policy. Any other execution policy setin zfp_stream is silently ignored.
For parallel execution, see the high-level API.

The following topics are available:
* Stream Manipulation
e Encoder
— ID Data
2D Data

3D Data

— 4D Data
* Decoder

— ID Data

— 2D Data

— 3D Data

— 4D Data
 Utility Functions

o C++ Wrappers

39

zfp Documentation, Release 1.0.1

8.1 Stream Manipulation

size_t zfp_stream_£flush(zfp_stream *stream)

Flush bit stream to write out any buffered bits. This function must be must be called after the last encode call.
The bit stream is aligned on a stream word boundary following this call. The number of zero-bits written, if any,
is returned.

size_t zfp_stream_align(zfp_stream *stream)

Align bit stream on next word boundary. This function is analogous to zfp_stream_fIush(), but for decoding.
That is, wherever the encoder flushes the stream, the decoder should align it to ensure synchronization between
encoder and decoder. The number of bits skipped, if any, is returned.

8.2 Encoder

A function is available for encoding whole or partial blocks of each scalar type and dimensionality. These functions
return the number of bits of compressed storage for the block being encoded, or zero upon failure.

8.2.1 1D Data

size_t zfp_encode_block_int32_1(z/p_stream *stream, const int32 *block)
size_t zfp_encode_block_int64_1(z/p_stream *stream, const int64 *block)
size_t zfp_encode_block_float_1(zfp_stream *stream, const float *block)

size_t zfp_encode_block_double_1(zfp_stream *stream, const double *block)
Encode 1D contiguous block of 4 values.

size_t zfp_encode_block_strided_int32_1(zfp_stream *stream, const int32 *p, ptrdiff_t sx)
size_t zfp_encode_block_strided_int64_1(zfp_stream *stream, const int64 *p, ptrdiff_t sx)
size_t zfp_encode_block_strided_float_1(z/p_stream *stream, const float *p, ptrdiff_t sx)

size_t zfp_encode_block_strided_double_1(z/p_stream *stream, const double *p, ptrdiff_t sx)
Encode 1D complete block from strided array with stride sx.

size_t zfp_encode_partial_block_strided_int32_1(z/p_stream *stream, const int32 *p, size_t nx, ptrdiff_t
SX)

size_t zfp_encode_partial_block_strided_int64_1(z/p_stream *stream, const int64 *p, size_t nx, ptrdiff_t
SX)

size_t zfp_encode_partial_block_strided_float_1(z/p_stream *stream, const float *p, size_t nx, ptrdiff_t
SX)

size_t zfp_encode_partial_block_strided_double_1(zfp_stream *stream, const double *p, size_t nx,
ptrdiff_t sx)

Encode 1D partial block of size nx from strided array with stride sx.

40 Chapter 8. Low-Level C API

zfp Documentation, Release 1.0.1

8.2.2 2D Data

size_t zfp_encode_block_int32_2 (z/p_stream *stream, const int32 *block)
size_t zfp_encode_block_int64_2 (z/p_stream *stream, const int64 *block)
size_t zfp_encode_block_float_2(z/p_stream *stream, const float *block)

size_t zfp_encode_block_double_2 (zfp_stream *stream, const double *block)
Encode 2D contiguous block of 4 x 4 values.

size_t zfp_encode_block_strided_int32_2(zfp_stream *stream, const int32 *p, ptrdiff_t sx, ptrdiff_t sy)
size_t zfp_encode_block_strided_int64_2 (zfp_stream *stream, const int64 *p, ptrdiff_t sx, ptrdiff_t sy)
size_t zfp_encode_block_strided_float_2(zfp_stream *stream, const float *p, ptrdiff_t sx, ptrdiff_t sy)

size_t zfp_encode_block_strided_double_2 (z/p_stream *stream, const double *p, ptrdiff_t sx, ptrdiff_t sy)
Encode 2D complete block from strided array with strides sx and sy.

size_t zfp_encode_partial_block_strided_int32_2(zfp_stream *stream, const int32 *p, size_t nx, size_t ny,
ptrdiff_t sx, ptrdiff_t sy)

size_t zfp_encode_partial_block_strided_int64_2 (z/p_stream *stream, const int64 *p, size_t nx, size_t ny,
ptrdiff_t sx, ptrdiff_t sy)

size_t zfp_encode_partial_block_strided_float_2(z/p_stream *stream, const float *p, size_t nx, size_t ny,
ptrdiff_t sx, ptrdiff_t sy)

size_t zfp_encode_partial_block_strided_double_2 (z/p_stream *stream, const double *p, size_t nx, size_t
ny, ptrdiff_t sx, ptrdiff_t sy)

Encode 2D partial block of size nx x ny from strided array with strides sx and sy.

8.2.3 3D Data

size_t zfp_encode_block_int32_3 (z/p_stream *stream, const int32 *block)
size_t zfp_encode_block_int64_3 (z/p_stream *stream, const int64 *block)
size_t zfp_encode_block_float_3(z/p_stream *stream, const float *block)

size_t zfp_encode_block_double_3 (zfp_stream *stream, const double *block)
Encode 3D contiguous block of 4 x 4 x 4 values.

size_t zfp_encode_block_strided_int32_3 (z/p_stream *stream, const int32 *p, ptrdiff_t sx, ptrdiff_t sy,
ptrdiff_t sz)

size_t zfp_encode_block_strided_int64_3 (z/p_stream *stream, const int64 *p, ptrdiff_t sx, ptrdiff_t sy,
ptrdiff_t sz)

8.2. Encoder 41

zfp Documentation, Release 1.0.1

size_t zfp_encode_block_strided_float_3(zfp_stream *stream, const float *p, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t
SzZ)

size_t zfp_encode_block_strided_double_3 (z/p_stream *stream, const double *p, ptrdiff_t sx, ptrdiff_t sy,
ptrdiff_t sz)

Encode 3D complete block from strided array with strides sx, sy, and sz.

size_t zfp_encode_partial_block_strided_int32_3(z/p_stream *stream, const int32 *p, size_t nx, size_t ny,
size_t nz, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz)

size_t zfp_encode_partial_block_strided_int64_3 (zfp_stream *stream, const int64 *p, size_t nx, size_t ny,
size_t nz, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz)

size_t zfp_encode_partial_block_strided_float_3(zfp_stream *stream, const float *p, size_t nx, size_t ny,
size_t nz, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz)

size_t zfp_encode_partial_block_strided_double_3 (z/p_stream *stream, const double *p, size_t nx, size_t
ny, size_t nz, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz)

Encode 3D partial block of size nx x ny x nz from strided array with strides sx, sy, and sz.

8.2.4 4D Data

size_t zfp_encode_block_int32_4(z/p_stream *stream, const int32 *block)
size_t zfp_encode_block_int64_4 (z/p_stream *stream, const int64 *block)
size_t zfp_encode_block_float_4(z/p_stream *stream, const float *block)

size_t zfp_encode_block_double_4 (zfp_stream *stream, const double *block)
Encode 4D contiguous block of 4 x 4 x 4 x 4 values.

size_t zfp_encode_block_strided_int32_4 (zfp_stream *stream, const int32 *p, ptrdiff_t sx, ptrdiff_t sy,
ptrdiff_t sz, ptrdiff_t sw)

size_t zfp_encode_block_strided_int64_4 (z/p_stream *stream, const int64 *p, ptrdiff_t sx, ptrdiff_t sy,
ptrdiff_t sz, ptrdiff_t sw)

size_t zfp_encode_block_strided_float_4(zfp_stream *stream, const float *p, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t
sz, ptrdiff_t sw)

size_t zfp_encode_block_strided_double_4(z/p_stream *stream, const double *p, ptrdiff_t sx, ptrdiff _t sy,
ptrdiff_t sz, ptrdiff_t sw)

Encode 4D complete block from strided array with strides sx, sy, sz, and sw.

size_t zfp_encode_partial_block_strided_int32_4(zfp_stream *stream, const int32 *p, size_t nx, size_t ny,
size_t nz, size_t nw, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz,
ptrdiff_t sw)

42 Chapter 8. Low-Level C API

zfp Documentation, Release 1.0.1

size_t zfp_encode_partial_block_strided_int64_4 (z/p_stream *stream, const int64 *p, size_t nx, size_t ny,
size_t nz, size_t nw, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz,
ptrdiff_t sw)

size_t zfp_encode_partial_block_strided_float_4(z/p_stream *stream, const float *p, size_t nx, size_t ny,
size_t nz, size_t nw, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz,
ptrdiff_t sw)

size_t zfp_encode_partial_block_strided_double_4 (z/p_stream *stream, const double *p, size_t nx, size_t
ny, size_t nz, size_t nw, ptrdiff_t sx, ptrdiff_t sy,
ptrdiff_t sz, ptrdiff_t sw)

Encode 4D partial block of size nx x ny x nz x nw from strided array with strides sx, sy, sz, and sw.

8.3 Decoder

Each function below decompresses a single block and returns the number of bits of compressed storage consumed. See
corresponding encoder functions above for further details.

8.3.1 1D Data

size_t zfp_decode_block_int32_1(z/p_stream *stream, int32 *block)
size_t zfp_decode_block_int64_1(z/p_stream *stream, int64 *block)
size_t zfp_decode_block_float_1(z/p_stream *stream, float *block)

size_t zfp_decode_block_double_1(z/p_stream *stream, double *block)
Decode 1D contiguous block of 4 values.

size_t zfp_decode_block_strided_int32_1(zfp_stream *stream, int32 *p, ptrdiff_t sx)
size_t zfp_decode_block_strided_int64_1(z/p_stream *stream, int64 *p, ptrdiff_t sx)
size_t zfp_decode_block_strided_float_1(zfp_stream *stream, float *p, ptrdiff_t sx)

size_t zfp_decode_block_strided_double_1(z/p_stream *stream, double *p, ptrdiff_t sx)

Decode 1D complete block to strided array with stride sx.

size_t zfp_decode_partial_block_strided_int32_1(zfp_stream *stream, int32 *p, size_t nx, ptrdiff_t sx)
size_t zfp_decode_partial_block_strided_int64_1(zfp_stream *stream, int64 *p, size_t nx, ptrdiff_t sx)
size_t zfp_decode_partial_block_strided_float_1(z/p_stream *stream, float *p, size_t nx, ptrdiff_t sx)

size_t zfp_decode_partial_block_strided_double_1(zfp_stream *stream, double *p, size_t nx, ptrdiff_t sx)

Decode 1D partial block of size nx to strided array with stride sx.

8.3. Decoder 43

zfp Documentation, Release 1.0.1

8.3.2 2D Data

size_t zfp_decode_block_int32_2 (z/p_stream *stream, int32 *block)
size_t zfp_decode_block_int64_2 (z/p_stream *stream, int64 *block)
size_t zfp_decode_block_float_2(z/p_stream *stream, float *block)

size_t zfp_decode_block_double_2 (zfp_stream *stream, double *block)
Decode 2D contiguous block of 4 x 4 values.

size_t zfp_decode_block_strided_int32_2(zfp_stream *stream, int32 *p, ptrdiff_t sx, ptrdiff_t sy)
size_t zfp_decode_block_strided_int64_2 (zfp_stream *stream, int64 *p, ptrdiff_t sx, ptrdiff_t sy)
size_t zfp_decode_block_strided_float_2(zfp_stream *stream, float *p, ptrdiff_t sx, ptrdiff_t sy)

size_t zfp_decode_block_strided_double_2 (z/p_stream *stream, double *p, ptrdiff_t sx, ptrdiff_t sy)
Decode 2D complete block to strided array with strides sx and sy.

size_t zfp_decode_partial_block_strided_int32_2(zfp_stream *stream, int32 *p, size_t nx, size_t ny,
ptrdiff_t sx, ptrdiff_t sy)

size_t zfp_decode_partial_block_strided_int64_2 (z/p_stream *stream, int64 *p, size_t nx, size_t ny,
ptrdiff_t sx, ptrdiff_t sy)

size_t zfp_decode_partial_block_strided_float_2(z/p_stream *stream, float *p, size_t nx, size_t ny,
ptrdiff_t sx, ptrdiff_t sy)

size_t zfp_decode_partial_block_strided_double_2 (7fp_stream *stream, double *p, size_t nx, size_t ny,
ptrdiff_t sx, ptrdiff_t sy)

Decode 2D partial block of size nx x ny to strided array with strides sx and sy.

8.3.3 3D Data

size_t zfp_decode_block_int32_3 (z/p_stream *stream, int32 *block)
size_t zfp_decode_block_int64_3 (z/p_stream *stream, int64 *block)
size_t zfp_decode_block_float_3(z/p_stream *stream, float *block)

size_t zfp_decode_block_double_3 (zfp_stream *stream, double *block)

Decode 3D contiguous block of 4 x 4 x 4 values.

size_t zfp_decode_block_strided_int32_3 (z/p_stream *stream, int32 *p, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz)
size_t zfp_decode_block_strided_int64_3 (zfp_stream *stream, int64 *p, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz)

size_t zfp_decode_block_strided_float_3(zfp_stream *stream, float *p, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz)

44 Chapter 8. Low-Level C API

zfp Documentation, Release 1.0.1

size_t zfp_decode_block_strided_double_3 (z/p_stream *stream, double *p, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t
Sz)

Decode 3D complete block to strided array with strides sx, sy, and sz.

size_t zfp_decode_partial_block_strided_int32_3(z/p_stream *stream, int32 *p, size_t nx, size_t ny, size_t
nz, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz)

size_t zfp_decode_partial_block_strided_int64_3 (z/p_stream *stream, int64 *p, size_t nx, size_t ny, size_t
nz, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz)

size_t zfp_decode_partial_block_strided_float_3(zfp_stream *stream, float *p, size_t nx, size_t ny, size_t
nz, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz)

size_t zfp_decode_partial_block_strided_double_3 (zfp_stream *stream, double *p, size_t nx, size_t ny,
size_t nz, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz)

Decode 3D partial block of size nx x ny X nz to strided array with strides sx, sy, and sz.

8.3.4 4D Data

size_t zfp_decode_block_int32_4(z/p_stream *stream, int32 *block)
size_t zfp_decode_block_int64_4 (z/p_stream *stream, int64 *block)
size_t zfp_decode_block_float_4(z/p_stream *stream, float *block)

size_t zfp_decode_block_double_4 (zfp_stream *stream, double *block)
Decode 4D contiguous block of 4 x 4 x 4 x 4 values.

size_t zfp_decode_block_strided_int32_4(zfp_stream *stream, int32 *p, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz,
ptrdiff_t sw)

size_t zfp_decode_block_strided_int64_4 (zfp_stream *stream, int64 *p, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz,
ptrdiff_t sw)

size_t zfp_decode_block_strided_float_4(zfp_stream *stream, float *p, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz,
ptrdiff_t sw)

size_t zfp_decode_block_strided_double_4(z/p_stream *stream, double *p, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t
sz, ptrdiff_t sw)

Decode 4D complete block to strided array with strides sx, sy, sz, and sw.

size_t zfp_decode_partial_block_strided_int32_4(z/p_stream *stream, int32 *p, size_t nx, size_t ny, size_t
nz, size_t nw, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz,
ptrdiff_t sw)

size_t zfp_decode_partial_block_strided_int64_4(z/p_stream *stream, int64 *p, size_t nx, size_t ny, size_t
nz, size_t nw, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz,
ptrdiff_t sw)

8.3. Decoder 45

zfp Documentation, Release 1.0.1

size_t zfp_decode_partial_block_strided_float_4(zfp_stream *stream, float *p, size_t nx, size_t ny, size_t
nz, size_t nw, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz,
ptrdiff_t sw)

size_t zfp_decode_partial_block_strided_double_4(zfp_stream *stream, double *p, size_t nx, size_t ny,
size_t nz, size_t nw, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t
sz, ptrdiff_t sw)

Decode 4D partial block of size nx x ny x nz x nw to strided array with strides sx, sy, sz, and sw.

8.4 Utility Functions

These functions convert 8- and 16-bit signed and unsigned integer data to (by promoting) and from (by demoting)
32-bit integers that can be (de)compressed by zfp’s int32 functions. These conversion functions are preferred over
simple casting since they eliminate the redundant leading zeros that would otherwise have to be compressed, and they
apply the appropriate bias for unsigned integer data.

void zfp_promote_int8_to_int32 (int32 *oblock, const int8 *iblock, uint dims)
void zfp_promote_uint8_to_int32(int32 *oblock, const uint8 *iblock, uint dims)
void zfp_promote_int16_to_int32(int32 *oblock, const int16 *iblock, uint dims)

void zfp_promote_uint16_to_int32(int32 *oblock, const uint16 *iblock, uint dims)

Convert dims-dimensional contiguous block to 32-bit integer type. Use dims = 0 to promote a single value.

void zfp_demote_int32_to_int8(int8 *oblock, const int32 *iblock, uint dims)
void zfp_demote_int32_to_uint8 (uint8 *oblock, const int32 *iblock, uint dims)
void zfp_demote_int32_to_int16(int16 *oblock, const int32 *iblock, uint dims)

void zfp_demote_int32_to_uint16 (uint16 *oblock, const int32 *iblock, uint dims)

Convert dims-dimensional contiguous block from 32-bit integer type. Use dims = 0 to demote a single value.

8.5 C++ Wrappers

To facilitate calling the low-level API from C++, a number of wrappers are available (as of zfp 1.0.0) that are templated
on scalar type and dimensionality. Each function of the form zfp_function_type_dims, where type denotes scalar
type and dims denotes dimensionality, has a corresponding C++ wrapper zfp: : function<type, dims>. For exam-
ple, the C function zfp_encode_block_float_2() has a C++ wrapper zfp: :encode_block<float, 2>(). Often
dims can be inferred from the parameters of overloaded functions, in which case it is omitted as template parameter.
The C++ wrappers are defined in z£fp. hpp.

46 Chapter 8. Low-Level C API

zfp Documentation, Release 1.0.1

8.5.1 Encoder

template<typename Scalar, uint dims>
size_t encode_block (zfp_stream *stream, const Scalar *block)

Encode contiguous block of dimensionality dims.

template<typename Scalar>
size_t encode_block_strided (zfp_stream *stream, const Scalar *p, ptrdiff_t sx)

template<typename Scalar>
size_t encode_block_strided (zfp_stream *stream, const Scalar *p, ptrdiff_t sx, ptrdiff_t sy)

template<typename Scalar>
size_t encode_block_strided(zfp_stream *stream, const Scalar *p, ptrdiff _t sx, ptrdiff_t sy, ptrdiff_t sz)

template<typename Scalar>
size_t encode_block_strided(zfp_stream *stream, const Scalar *p, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz, ptrdiff_t
SW)

Encode complete block from strided array with strides sx, sy, sz, and sw.

template<typename Scalar>
size_t encode_partial_block_strided(zfp_stream *stream, const Scalar *p, size_t nx, ptrdiff_t sx)

template<typename Scalar>
size_t encode_partial_block_strided(zfp_stream *stream, const Scalar *p, size_t nXx, size_t ny, ptrdiff_t sx,
ptrdiff_t sy)

template<typename Scalar>
size_t encode_partial_block_strided(zfp_stream *stream, const Scalar *p, size_t nX, size_t ny, size_t nz,
ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz)

template<typename Scalar>
size_t encode_partial_block_strided(zfp_stream *stream, const Scalar *p, size_t nX, size_t ny, size_t nz,
size_t nw, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz, ptrdiff_t sw)

Encode partial block of size nx x ny x nz x nw from strided array with strides sx, sy, sz, and sw.

8.5.2 Decoder

template<typename Scalar, uint dims>
size_t decode_block (zfp_stream *stream, Scalar *block)

Decode contiguous block of dimensionality dims.

template<typename Scalar>
size_t decode_block_strided (zfp_stream *stream, Scalar *p, ptrdiff_t sx)

template<typename Scalar>
size_t decode_block_strided (zfp_stream *stream, Scalar *p, ptrdiff_t sx, ptrdiff_t sy)

template<typename Scalar>

8.5. C++ Wrappers 47

zfp Documentation, Release 1.0.1

size_t decode_block_strided (zfp_stream *stream, Scalar *p, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz)

template<typename Scalar>
size_t decode_block_strided (zfp_stream *stream, Scalar *p, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz, ptrdiff_t sw)

Decode complete block to strided array with strides sx, sy, sz, and sw.

template<typename Scalar>
size_t decode_partial_block_strided(zfp_stream *stream, Scalar *p, size_t nx, ptrdiff_t sx)

template<typename Scalar>
size_t decode_partial_block_strided(zfp_stream *stream, Scalar *p, size_t nx, size_t ny, ptrdiff_t sx, ptrdiff_t
sy)

template<typename Scalar>
size_t decode_partial_block_strided(zfp_stream *stream, Scalar *p, size_t nx, size_t ny, size_t nz, ptrdiff_t
sx, ptrdiff_t sy, ptrdiff_t sz)

template<typename Scalar>
size_t decode_partial_block_strided(zfp_stream *stream, Scalar *p, size_t nx, size_t ny, size_t nz, size_t nw,
ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz, ptrdiff_t sw)

Decode partial block of size nx x ny x nz x nw to strided array with strides sx, sy, sz, and sw.

48 Chapter 8. Low-Level C API

CHAPTER
NINE

BIT STREAM API

zfp relies on low-level functions for bit stream 1/O, e.g., for reading/writing single bits or groups of bits. zfp’s bit
streams support random access (with some caveats) and, optionally, strided access. The functions read from and write
to main memory allocated by the user. Buffer overruns are for performance reasons not guarded against.

From an implementation standpoint, bit streams are read from and written to memory in increments of words of bits.
The constant power-of-two word size is configured at compile time, and is limited to 8, 16, 32, or 64 bits.

The bit stream API is publicly exposed and may be used to write additional information such as metadata into the zfp
compressed stream and to manipulate whole or partial bit streams. Moreover, we envision releasing the bit stream
functions as a separate library in the future that may be used, for example, in other compressors.

Stream readers and writers are synchronized by making corresponding calls. For each write call, there is a correspond-
ing read call. This ensures that reader and writer agree on the position within the stream and the number of bits buffered,
if any. The API below reflects this duality.

A bit stream is either in read or write mode, or either, if rewound to the beginning. When in read mode, only read calls
should be made, and similarly for write mode.

9.1 Strided Streams

Bit streams may be strided by sequentially reading/writing a few words at a time and then skipping over some user-
specified number of words. This allows, for instance, zfp to interleave the first few bits of all compressed blocks in
order to support progressive access. To enable strided access, which does carry a small performance penalty, the macro
BIT_STREAM_STRIDED must be defined during compilation.

Strides are specified in terms of a block size—a power-of-two number of contiguous words—and a delta, which specifies
how many words to advance the stream by to get to the next contiguous block. These bit stream blocks are entirely
independent of the 4¢ blocks used for compression in zfp. Setting delta to zero ensures a non-strided, sequential layout.

9.2 Macros

Two compile-time macros are used to influence the behavior: BIT_STREAM_WORD_TYPE and BIT_STREAM_STRIDED.
These are documented in the installation section.

49

zfp Documentation, Release 1.0.1

9.3 Types

type bitstream_word

Bits are buffered and read/written in units of words. By default, the bit stream word type is 64 bits, but may be set
to 8, 16, or 32 bits by setting the macro BIT_STREAM_WORD_TYPE to uint8, uint16, or uint32, respectively.
Larger words tend to give higher throughput, while 8-bit words are needed to ensure endian independence (see
FAQ #11).

Note: To avoid potential name clashes, this type was renamed in zfp 1.0.0 from the shorter and more ambiguous type
name word.

type bitstream_offset

Type holding the offset, measured in number of bits, into the bit stream where the next bit will be read
or written. This type allows referencing bits in streams at least 2% bits long. Note that it is possible
that sizeof(bitstream_offset) > sizeof(size_t) since a stream may be as long as sizeof{size_t) *
CHAR_BIT bits.

type bitstream_size

Alias for bitstream_offset that signifies the bit length of a stream or substream rather than an offset into it.

type bitstream_count

Type sufficient to count the number of bits read or written in functions like stream_read_bits() and
stream_write_bits(). sizeof(bitstream_count) <= sizeof(bitstream_size).

type bitstream

The bit stream struct maintains all the state associated with a bit stream. This struct is passed to all bit stream
functions. Its members should not be accessed directly.

struct bitstream {
bitstream_count bits; // number of buffered bits (0 <= bits < word size)
bitstream_word buffer; // incoming/outgoing bits (buffer < 24bits)

bitstream_word* ptr; // pointer to next word to be read/written

bitstream_word* begin; // beginning of stream

bitstream_word* end; // end of stream (not enforced)

size_t mask; // one less the block size in number of words (if BIT_
—.STREAM_STRIDED)

ptrdiff_t delta; // number of words between consecutive blocks (if BIT_

. STREAM_STRIDED)
1

50 Chapter 9. Bit Stream API

zfp Documentation, Release 1.0.1

9.4 Constants

const size_t stream_word_bits

The number of bits in a word. The size of a flushed bit stream will be a multiple of this number of bits. See
BIT_STREAM_WORD_TYPE and stream_alignment ().

9.5 Functions

bitstream *stream_open(void *buffer, size_t bytes)

Allocate a bitstream struct and associate it with the memory buffer allocated by the caller.

void stream_close (bitstream *stream)

Close the bit stream and deallocate stream.

bitstream *stream_clone (const bitstream *stream)
Create a copy of stream that points to the same memory buffer.

bitstream_count stream_alignment ()

Word size in bits. This is a functional form of the constant stream_word_bits and returns the same value.
Available since zfp 1.0.0.

void *stream_data(const bitstream *stream)
Return pointer to the beginning of bit stream stream.

size_t stream_size (const bitstream *stream)

Return position of stream pointer in number of bytes, which equals the end of stream if no seeks have been made.
Note that additional bits may be buffered and not reported unless the stream has been flushed.

size_t stream_capacity(const bitstream *stream)

Return byte size of memory buffer associated with stream specified in stream_open().

uint stream_read_bit (bitstream *stream)
Read a single bit from stream.

uint stream_write_bit (bitstream *stream, uint bit)
Write single bit to stream. bit must be one of 0 or 1. The value of bir is returned.

9.4. Constants 51

zfp Documentation, Release 1.0.1

uint64 stream_read_bits (bitstream *stream, bitstream_count n)

Read and return 0 < n < 64 bits from stream.

uint64 stream_write_bits (bitstream *stream, uint64 value, bitstream_count n)

Write 0 < n < 64 low bits of value to stream. Return any remaining bits from value, i.e., value >> n.

bitstream_offset stream_rtell (const bitstream *stream)
Return bit offset to next bit to be read.

bitstream_offset stream_wtell (const bitstream *stream)
Return bit offset to next bit to be written.

void stream_rewind (bitstream *stream)

Rewind stream to beginning of memory buffer. Following this call, the stream may either be read or written.

void stream_rseek (bitstream *stream, bitstream_offset offset)

Position stream for reading at given bit offset. This places the stream in read mode.

void stream_wseek (bitstream *stream, bitstream_offset offset)

Position stream for writing at given bit offset. This places the stream in write mode.

void stream_skip (bitstream *stream, bitstream_count n)

Skip over the next n bits, i.e., without reading them.

void stream_pad(bitstream *stream, bitstream_count n)

Append n zero-bits to stream.

bitstream_count stream_align(bitstream *stream)

Align stream on next word boundary by skipping bits, i.e., without reading them. No skipping is done if the
stream is already word aligned. Return the number of skipped bits, if any.

bitstream_count stream_flush(bitstream *stream)

Write out any remaining buffered bits. When one or more bits are buffered, append zero-bits to the stream to
align it on a word boundary. Return the number of bits of padding, if any.

52 Chapter 9. Bit Stream API

zfp Documentation, Release 1.0.1

void stream_copy (bitstream *dst, bitstream *src, bitstream_size n)

Copy n bits from src to dst, advancing both bit streams.

size_t stream_stride_block(const bitstream *stream)

Return stream block size in number of words. The block size is always one word unless strided streams are
enabled. See Strided Streams for more information.

ptrdiff_t stream_stride_delta(const bitstream *stream)

Return stream delta in number of words between blocks. See Strided Streams for more information.

int stream_set_stride (bitstream *stream, size_t block, ptrdiff_t delta)

Set block size, block, in number of words and spacing, delta, in number of blocks for strided access. Return
nonzero upon success. Requires BIT_STREAM_STRIDED.

9.5. Functions 53

zfp Documentation, Release 1.0.1

54 Chapter 9. Bit Stream API

CHAPTER
TEN

PYTHON BINDINGS

zfp 0.5.5 adds zfPy: Python bindings that allow compressing and decompressing NumPy integer and floating-point
arrays. The zfPy implementation is based on Cython and requires both NumPy and Cython to be installed. Currently,
zfPy supports only serial execution.

The zfPy API is limited to two functions, for compression and decompression, which are described below.

10.1 Compression

zfpy.compress_numpy (arr, tolerance=-1, rate=-1, precision=-1, write_header=True)

Compress NumPy array, arr, and return a compressed byte stream. The non-expert compression mode is selected
by setting one of folerance, rate, or precision. If none of these arguments is specified, then reversible mode
is used. By default, a header that encodes array shape and scalar type as well as compression parameters is
prepended, which can be omitted by setting write_header to False. If this function fails for any reason, an
exception is thrown.

zfPy compression currently requires a NumPy array (ndarray) populated with the data to be compressed. The array
metadata (i.e., shape, strides, and scalar type) are used to automatically populate the zfp_field structure passed to
zfp_compress (). By default, all that is required to be passed to the compression function is the NumPy array; this
will result in a stream that includes a header and is losslessly compressed using the reversible mode. For example:

import zfpy
import numpy as np

my_array = np.arange(l, 20)
compressed_data = zfpy.compress_numpy(my_array)
decompressed_array = zfpy.decompress_numpy(compressed_data)

confirm lossless compression/decompression
np.testing.assert_array_equal (my_array, decompressed_array)

Using the fixed-accuracy, fixed-rate, or fixed-precision modes simply requires setting one of the rolerance, rate, or
precision arguments, respectively. For example:

compressed_data = zfpy.compress_numpy(my_array, tolerance=le-3)
decompressed_array = zfpy.decompress_numpy(compressed_data)

Note the change from "equal" to "allclose" due to the lossy compression
np.testing.assert_allclose(my_array, decompressed_array, atol=1e-3)

55

https://www.numpy.org
https://cython.org
https://www.numpy.org/devdocs/reference/arrays.ndarray.html

zfp Documentation, Release 1.0.1

Since NumPy arrays are C-ordered by default (i.e., the rightmost index varies fastest) and zfp_compress() as-
sumes Fortran ordering (i.e., the leftmost index varies fastest), compress_numpy () automatically reverses the or-
der of dimensions and strides in order to improve the expected memory access pattern during compression. The
decompress_numpy () function also reverses the order of dimensions and strides, and therefore decompression will
restore the shape of the original array. Note, however, that the zfp stream does not encode the memory layout of the
original NumPy array, and therefore layout information like strides, contiguity, and C vs. Fortran order may not be pre-
served. Nevertheless, zfPy correctly compresses NumPy arrays with any memory layout, including Fortran ordering
and non-contiguous storage.

Byte streams produced by compress_numpy () can be decompressed by the zfp command-line tool. In general, they
cannot be deserialized as compressed arrays, however.

Note: decompress_numpy () requires a header to decompress properly, so do not set write_header = False during
compression if you intend to decompress the stream with zfPy.

10.2 Decompression

zfpy.decompress_numpy (compressed_data)

Decompress a byte stream, compressed_data, produced by compress_numpy () (with header enabled) and return
the decompressed NumPy array. This function throws on exception upon error.

decompress_numpy () consumes a compressed stream that includes a header and produces a NumPy array with
metadata populated based on the contents of the header. Stride information is not stored in the zfp header, so
decompress_numpy () assumes that the array was compressed with the first (leftmost) dimension varying fastest (typ-
ically referred to as Fortran-ordering). The returned NumPy array is in C-ordering (the default for NumPy arrays), so
the shape of the returned array is reversed from the shape information stored in the embedded header. For example, if
the header declares the array to be of shape (nx, ny, nz) = (2, 4, 8), then the returned NumPy array will have a shape of
(8, 4, 2). Since the compress_numpy () function also reverses the order of dimensions, arrays both compressed and
decompressed with zfPy will have compatible shape.

Note: Decompressing a stream without a header requires using the internal _decompress () Python function (or the
C API).

zfpy._decompress (compressed_data, ztype, shape, out=None, tolerance=-1, rate=-1, precision=-1)

Decompress a headerless compressed stream (if a header is present in the stream, it will be incorrectly interpreted
as compressed data). ztype specifies the array scalar type while shape specifies the array dimensions; both must
be known by the caller. The compression mode is selected by specifying one (or none) of folerance, rate, and
precision, as in compress_numpy (), and also must be known by the caller. If out = None, a new NumPy array
is allocated. Otherwise, out specifies the NumPy array or memory buffer to decompress into. Regardless, the
decompressed NumPy array is returned unless an error occurs, in which case an exception is thrown.

In _decompress (), ztype is one of the zfp supported scalar types (see zfp_type), which are available in zfPy as

type_int32 = zfp_type_int32
type_int64 = zfp_type_int64
type_float = zfp_type_float
type_double = zfp_type_double

These can be manually specified (e.g., zfpy.type_int32) or generated from a NumPy drype (e.g., zfpy.
dtype_to_ztype(array.dtype)).

56 Chapter 10. Python Bindings

zfp Documentation, Release 1.0.1

If out is specified, the data is decompressed into the out buffer. out can be a NumPy array or a pointer to memory
large enough to hold the decompressed data. Regardless of the type of out and whether it is provided, _decompress ()
always returns a NumPy array. If out is not provided, then the array is allocated for the user. If out is provided, then
the returned NumPy array is just a pointer to or wrapper around the user-supplied out. If out is a NumPy array, then its
shape and scalar type must match the required arguments shape and ztype. To avoid this constraint check, use out =
ndarray.data rather than out = ndarray when calling _decompress().

Warning: _decompress() is an “experimental” function currently used internally for testing. It does allow
decompression of streams without headers, but providing too small of an output buffer or incorrectly specifying the
shape or strides can result in segmentation faults. Use with care.

10.2. Decompression 57

zfp Documentation, Release 1.0.1

58 Chapter 10. Python Bindings

CHAPTER
ELEVEN

FORTRAN BINDINGS

zfp 0.5.5 adds zFORp: a Fortran API providing wrappers around the high-level C API. Wrappers for compressed-array
classes will arrive in a future release. The zZFORp implementation is based on the standard iso_c_binding module
available since Fortran 2003. The use of ptrdiff_t in the zfp 1.0.0 C API, however, requires the corresponding
c_ptrdiff_t available only since Fortran 2018.

Every high-level C API function can be called from a Fortran wrapper function. C structs are wrapped as Fortran
derived types, each containing a single C pointer to the C struct in memory. The wrapper functions accept and return
these Fortran types, so users should never need to touch the C pointers. In addition to the high-level C API, two essential
functions from the bit stream API for opening and closing bit streams are available.

See example code tests/fortran/testFortran. f (on the GitHub develop branch) for how the Fortran API is used
to compress and decompress data.

Note: zfp 1.0.0 simplifies the zZFORp module name from zforp_module to zfp. This will likely require changing
associated use statements within existing code when updating from prior versions of zFORp.

Furthermore, as outlined above, the zfp 1.0.0 API requires a Fortran 2018 compiler.

11.1 Types

type zFORp_bitstream

Type fields

* % object [c_ptr] :: A C pointer to the instance of bitstream

type zFORp_stream

Type fields

* % object [c_ptr] :: A C pointer to the instance of zfp_stream

type zFORp_field

Type fields
* % object [c_ptr] :: A C pointer to the instance of zfp_field

59

https://github.com/LLNL/zfp/tree/develop

zfp Documentation, Release 1.0.1

11.2 Constants

11.2.1 Enumerations

integer zFORp_type_none
integer zFORp_type_int32
integer zFORp_type_int64
integer zFORp_type_float

integer zFORp_type_double
Enums wrapping zfp_type

integer zFORp_mode_null

integer zFORp_mode_expert

integer zFORp_mode_fixed_rate
integer zFORp_mode_fixed_precision
integer zFORp_mode_fixed_accuracy

integer zFORp_mode_reversible

Enums wrapping zfp_mode

integer zFORp_exec_serial
integer zFORp_exec_omp

integer zFORp_exec_cuda
Enums wrapping zfp_exec_policy

11.2.2 Non-Enum Constants

integer zFORp_version_major
Wraps ZFP_VERSION_MAJOR

integer zFORp_version_minor
Wraps ZFP_VERSION_MINOR

integer zFORp_version_patch
Wraps ZFP_VERSION_PATCH

60 Chapter 11. Fortran Bindings

zfp Documentation, Release 1.0.1

integer zFORp_version_tweak
Wraps ZFP_VERSION_TWEAK

integer zFORp_codec_version
Wraps zfp_codec_version

integer zFORp_library_version
Wraps zfp_library_version

character(len=36) zFORp_version_string

Wraps zfp_version_string

integer zFORp_min_bits
Wraps ZFP_MIN_BITS

integer zFORp_max_bits
Wraps ZFP_MAX_BITS

integer zFORp_max_prec
Wraps ZFP_MAX_PREC

integer zFORp_min_exp
Wraps ZFP_MIN_EXP

integer zFORp_header_magic
Wraps ZFP_HEADER_MAGIC

integer zFORp_header_meta
Wraps ZFP_HEADER_META

integer zFORp_header_mode
Wraps ZFP_HEADER_MODE

integer zFORp_header_full
Wraps ZFP_HEADER_FULL

11.2. Constants 61

zfp Documentation, Release 1.0.1

integer zFORp_meta_null
Wraps ZFP_META_NULL

integer zFORp_magic_bits
Wraps ZFP_MAGIC_BITS

integer zFORp_meta_bits
Wraps ZFP_META_BITS

integer zFORp_mode_short_bits
Wraps ZFP_MODE_SHORT_BITS

integer zFORp_mode_long_bits
Wraps ZFP_MODE_LONG_BITS

integer zFORp_header_max_bits
Wraps ZFP_HEADER_MAX_BITS

integer zFORp_mode_short_max
Wraps ZFP_MODE_SHORT_MAX

11.3 Functions and Subroutines

Each of the functions included here wraps a corresponding C function. Please consult the C documentation for detailed
descriptions of the functions, their parameters, and their return values.

11.3.1 Bit Stream

function zFORp_bitstream_stream_open(buffer, bytes)
Wrapper for stream_open()

Parameters
* buffer [c_ptr,in] :: Memory buffer
* bytes [integer (kind=8),in] :: Buffer size in bytes

Return
bs [zFORp_bitstream] :: Bit stream

subroutine zFORp_bitstream_stream_close(bs)
Wrapper for stream_close()

Parameters
bs [zZFORp_bitstream,inout] :: Bit stream

62 Chapter 11. Fortran Bindings

zfp Documentation, Release 1.0.1

11.3.2 Utility Functions

function zFORp_type_size(scalar_type)
Wrapper for zfp_type_size()

Parameters
scalar_type [integer,in] :: zZFORp_type enum

Return
type_size [integer (kind=8)] :: Size of described zfp_type, in bytes, from C-language perspec-
tive

11.3.3 Compressed Stream

function zFORp_stream_open(bs)
Wrapper for zfp_stream_open()

Parameters
bs [zZFORp_bitstream, in] :: Bit stream

Return
stream [7FORp_stream] :: Newly allocated compressed stream

subroutine zFORp_stream_close(stream)
Wrapper for zfp_stream_close()

Parameters
stream [zFORp_stream,inout] :: Compressed stream

function zFORp_stream_bit_stream(stream)
Wrapper for zfp_stream_bit_stream()

Parameters
stream [7FORp_stream,in] :: Compressed stream

Return
bs [zZFORp_bitstream] :: Bit stream

function zFORp_stream_compression_mode (stream)

Wrapper for zfp_stream_compression_mode ()

Parameters
stream [zFORp_stream,in] :: Compressed stream

Return
mode [integer] :: zZFORp_mode enum

11.3. Functions and Subroutines 63

zfp Documentation, Release 1.0.1

function zFORp_stream_rate(stream, dims)
Wrapper for zfp_stream_rate()

Parameters
» stream [zFORp_stream,in] :: Compressed stream
o dims [integer,in] :: Number of dimensions

Return
rate_result [real (kind=8)] :: Rate in compressed bits/scalar

function zFORp_stream_precision(stream)

Wrapper for zfp_stream_precision()

Parameters
stream [zFORp_stream,in] :: Compressed stream

Return
prec_result [integer] :: Precision in uncompressed bits/scalar

function zFORp_stream_accuracy (stream)
Wrapper for zfp_stream_accuracy()

Parameters
stream [7FORp_stream,in] :: Compressed stream

Return
tol_result [real (kind=38)] :: Absolute error tolerance

function zFORp_stream_mode (stream)
Wrapper for zfp_stream_mode ()

Parameters
stream [7FORp_stream,in] :: Compressed stream

Return
mode [integer (kind=8)] :: 64-bit encoded mode

subroutine zFORp_stream_params (stream, minbits, maxbits, maxprec, minexp)
Wrapper for zfp_stream_params ()

Parameters
* stream [zFORp_stream,in] :: Compressed stream
* minbits [integer,inout] :: Minimum number of bits per block
* maxbits [integer,inout] :: Maximum number of bits per block
* maxprec [integer,inout] :: Maximum precision

* minexp [integer,inout] :: Minimum bit plane number encoded

64 Chapter 11. Fortran Bindings

zfp Documentation, Release 1.0.1

function zFORp_stream_compressed_size (stream)
Wrapper for zfp_stream_compressed_size()

Parameters
stream [zFORp_stream,in] :: Compressed stream

Return
compressed_size [integer (kind=8)] :: Compressed size in bytes

function zFORp_stream_maximum_size (stream, field)
Wrapper for zfp_stream_maximum_size ()

Parameters
 stream [zFORp_stream,in] :: Compressed stream
« field /[zFORp_field,in] :: Field metadata

Return
max_size [integer (kind=8)] :: Maximum possible compressed size in bytes

subroutine zFORp_stream_rewind (stream)
Wrapper for zfp_stream_rewind()

Parameters
stream [zFORp_stream,in] :: Compressed stream

subroutine zFORp_stream_set_bit_stream(stream, bs)
Wrapper for zfp_stream_set_bit_stream()

Parameters
* stream [zFORp_stream,in] :: Compressed stream

* bs [zZFORp_bitstream, in] :: Bit stream

11.3.4 Compression Parameters

subroutine zFORp_stream_set_reversible (stream)
Wrapper for zfp_stream_set_reversible()

Parameters
stream [zFORp_stream,in] :: Compressed stream

function zFORp_stream_set_rate(stream, rate, scalar_type, dims, align)
Wrapper for zfp_stream_set_rate()

Parameters
 stream [zZFORp_stream,in] :: Compressed stream
e rate [real,in] :: Desired rate

* scalar_type [integer,in] :: zZFORp_type enum

11.3. Functions and Subroutines

65

zfp Documentation, Release 1.0.1

* dims [integer,in] :: Number of dimensions
* align [integer,in] :: Align blocks on words for write random access?

Return
rate_result [real (kind=8)] :: Actual set rate in bits/scalar

function zFORp_stream_set_precision(stream, prec)
Wrapper for zfp_stream_set_precision()

Parameters
* stream [zFORp_stream,in] :: Compressed stream
* prec [integer,in] :: Desired precision

Return
prec_result [integer] :: Actual set precision

function zFORp_stream_set_accuracy (stream, tolerance)
Wrapper for zfp_stream_set_accuracy()

Parameters
 stream [zFORp_stream,in] :: Compressed stream
¢ tolerance [real (kind=8),in] :: Desired error tolerance

Return
tol_result [real (kind=8)] :: Actual set tolerance

function zFORp_stream_set_mode (stream, mode)
Wrapper for zfp_stream_set_mode ()

Parameters
* stream [zFORp_stream,in] :: Compressed stream
* mode [integer (kind=8),in] :: Compact encoding of compression parameters

Return
mode_result [integer] :: Newly set zFORp_mode enum

function zFORp_stream_set_params (stream, minbits, maxbits, maxprec, minexp)
Wrapper for zfp_stream_set_params ()

Parameters
 stream [zFORp_stream,in] :: Compressed stream
* minbits [integer,in] :: Minimum number of bits per block
» maxbits [integer,in] :: Maximum number of bits per block
* maxprec [integer,in] :: Maximum precision
* minexp [integer,in] :: Minimum bit plane number encoded

Return
is_success [integer] :: Indicate whether parameters were successfully set (1) or not (0)

66 Chapter 11. Fortran Bindings

zfp Documentation, Release 1.0.1

11.3.5 Execution Policy

function zFORp_stream_execution(stream)
Wrapper for zfp_stream_execution()

Parameters
stream [zFORp_stream,in] :: Compressed stream

Return
execution_policy [integer] :: zZFORp_exec enum indicating active execution policy

function zFORp_stream_omp_threads (stream)
Wrapper for zfp_stream_omp_threads ()

Parameters
stream [7FORp_stream,in] :: Compressed stream

Return
thread_count [integer] :: Number of OpenMP threads to use upon execution

function zFORp_stream_omp_chunk_size (stream)
Wrapper for zfp_stream_omp_chunk_size()

Parameters
stream [zFORp_stream,in] :: Compressed stream

Return
chunk_size_blocks [integer (kind=8)] :: Specified chunk size, in blocks

function zFORp_stream_set_execution(stream, execution_policy)

Wrapper for zfp_stream_set_execution()
Parameters
 stream [zFORp_stream,in] :: Compressed stream
* execution_policy [integer,in] :: zZFORp_exec enum indicating desired execution policy

Return
is_success [integer] :: Indicate whether execution policy was successfully set (1) or not (0)

function zFORp_stream_set_omp_threads (stream, thread_count)
Wrapper for zfp_stream_set_omp_threads ()

Parameters
* stream [zFORp_stream,in] :: Compressed stream
* thread_count [integer,in] :: Desired number of OpenMP threads

Return
is_success [integer] :: Indicate whether number of threads was successfully set (1) or not (0)

11.3. Functions and Subroutines 67

zfp Documentation, Release 1.0.1

function zFORp_stream_set_omp_chunk_size (stream, chunk_size)
Wrapper for zfp_stream_set_omp_chunk_size()

Parameters
* stream [zFORp_stream,in] :: Compressed stream
* chunk_size [integer,in] :: Desired chunk size, in blocks

Return
is_success [integer] :: Indicate whether chunk size was successfully set (1) or not (0)

11.3.6 Array Metadata

function zFORp_field_alloc()
Wrapper for zfp_field_alloc()

Return
field [zFORp_field] :: Newly allocated field

function zFORp_field_1d(uncompressed_ptr, scalar_type, nx)
Wrapper for zfp_field_1d()

Parameters
* uncompressed_ptr [c_ptr,in] :: Pointer to uncompressed data
* scalar_type [integer,in] :: zZFORp_type enum describing uncompressed scalar type
* nx [integer,in] :: Number of array elements

Return
field [zFORp_field] :: Newly allocated field

function zFORp_field_2d(uncompressed_ptr, scalar_type, nx, ny)
Wrapper for zfp_field_2d()

Parameters
* uncompressed_ptr [c_ptr,in] :: Pointer to uncompressed data
* scalar_type [integer,in] :: zZFORp_type enum describing uncompressed scalar type
* nx [integer,in] :: Number of array elements in x dimension
* ny [integer,in] :: Number of array elements in y dimension

Return
field [zFORp_field] :: Newly allocated field

function zFORp_field_3d(uncompressed_ptr, scalar_type, nx, ny, nz)
Wrapper for zfp_field_3d()

Parameters

* uncompressed_ptr [c_ptr,in] :: Pointer to uncompressed data

68 Chapter 11. Fortran Bindings

zfp Documentation, Release 1.0.1

* scalar_type [integer,in] :: zZFORp_type enum describing uncompressed scalar type
* nx [integer,in] :: Number of array elements in x dimension
* ny [integer,in] :: Number of array elements in y dimension
* nz [integer,in] :: Number of array elements in z dimension

Return
field /[zFORp_field] :: Newly allocated field

function zFORp_field_4d(uncompressed_ptr, scalar_type, nx, ny, nz, nw)
Wrapper for zfp_field_4d()

Parameters
* uncompressed_ptr [c_ptr,in] :: Pointer to uncompressed data
* scalar_type [integer,in] :: zZFORp_type enum describing uncompressed scalar type
* nx [integer,in] :: Number of array elements in x dimension
* ny [integer,in] :: Number of array elements in y dimension
* nz [integer,in] :: Number of array elements in z dimension
* nw [integer,in] :: Number of array elements in w dimension

Return
field /[zFORp_field] :: Newly allocated field

subroutine zFORp_field_free(field)
Wrapper for zfp_field_free()

Parameters
field [zFORp_field,inout] :: Field metadata

function zFORp_field_pointer (field)
Wrapper for zfp_field_pointer()

Parameters
field /zFORp_field,in] :: Field metadata

Return
arr_ptr [c_ptr] :: Pointer to raw (uncompressed/decompressed) array

function zFORp_field_begin(field)
Wrapper for zfp_field_begin()

Parameters
field [zFORp_field,in] :: Field metadata

Return
begin_ptr [c_ptr] :: Pointer to lowest memory address spanned by field

11.3. Functions and Subroutines

69

zfp Documentation, Release 1.0.1

function zFORp_field_type (field)
Wrapper for zfp_field_type()

Parameters
field [zFORp_field,in] :: Field metadata

Return
scalar_type [integer] :: zZFORp_type enum describing uncompressed scalar type

function zFORp_field_precision(field)
Wrapper for zfp_field_precision()

Parameters
field [zFORp_field,in] :: Field metadata

Return
prec [integer] :: Scalar type precision in number of bits

function zFORp_field_dimensionality (field)
Wrapper for zfp_field_dimensionality ()

Parameters
field /[zFORp_field,in] :: Field metadata

Return
dims [integer] :: Dimensionality of array

function zFORp_field_size(field, size_arr)
Wrapper for zfp_field _size()

Parameters
« field /zFORp_field,in] :: Field metadata
* size_arr [integer,dimension(4),target,inout] :: Integer array to write field dimensions into

Return
total_size [integer (kind=8)] :: Total number of array elements

function zFORp_field_size_bytes(field)
Wrapper for zfp_field_size_bytes()

Parameters
field [zFORp_field,in] :: Field metadata

Return
byte_size [integer (kind=8)] :: Number of bytes spanned by field data including gaps (if any)

70 Chapter 11. Fortran Bindings

zfp Documentation, Release 1.0.1

function zFORp_field_blocks(field)
Wrapper for zfp_field_blocks()

Parameters
field [zFORp_field,in] :: Field metadata

Return
blocks [integer (kind=38)] :: Total number of blocks spanned by field

function zFORp_field_stride(field, stride_arr)
Wrapper for zfp_field_stride()

Parameters
« field /[zFORp_field,in] :: Field metadata
o stride_arr [integer,dimension(4)target,inout] :: Integer array to write strides into

Return
is_strided [integer] :: Indicate whether field is strided (1) or not (0)

function zFORp_field_is_contiguous (field)
Wrapper for zfp_field_is_contiguous()

Parameters
field [zFORp_field,in] :: Field metadata

Return
is_contiguous [integer] :: Indicate whether field is contiguous (1) or not (0)

function zFORp_field_metadata(field)
Wrapper for zfp_field_metadata()

Parameters
field [zFORp_field,in] :: Field metadata

Return
encoded_metadata [integer (kind=8)] :: Compact encoding of metadata

subroutine zFORp_field_set_pointer(field, arr_ptr)
Wrapper for zfp_field_set_pointer()

Parameters
* field [zFORp_field,in] :: Field metadata

e arr_ptr [c_ptr,in] :: Pointer to beginning of uncompressed array

11.3. Functions and Subroutines 71

zfp Documentation, Release 1.0.1

function zFORp_field_set_type (field, scalar_type)
Wrapper for zfp_field_set_type()

Parameters
* field [zFORp_field,in] :: Field metadata
* scalar_type [integer] :: zFORp_type enum indicating desired scalar type

Return
type_result [integer] :: zFORp_type enum indicating actual scalar type

subroutine zFORp_field_set_size_1ld(field, nx)
Wrapper for zfp_field_set_size_1d()

Parameters
* field /[zFORp_field,in] :: Field metadata

* nx [integer,in] :: Number of array elements

subroutine zFORp_field_set_size_2d(field, nx, ny)
Wrapper for zfp_field_set_size_2d()

Parameters
* field [zZFORp_field,in] :: Field metadata
* nx [integer,in] :: Number of array elements in x dimension

* ny [integer,in] :: Number of array elements in y dimension

subroutine zFORp_field_set_size_3d(field, nx, ny, nz)
Wrapper for zfp_field_set_size_3d()

Parameters
* field [zFORp_field,in] :: Field metadata
* nx [integer,in] :: Number of array elements in x dimension
* ny [integer,in] :: Number of array elements in y dimension

* nz [integer,in] :: Number of array elements in z dimension

subroutine zFORp_field_set_size_4d(field, nx, ny, nz, nw)
Wrapper for zfp_field_set_size_4d()

Parameters
* field [zFORp_field,in] :: Field metadata
* nx [integer,in] :: Number of array elements in x dimension
* ny [integer,in] :: Number of array elements in y dimension

* nz [integer,in] :: Number of array elements in z dimension

72 Chapter 11. Fortran Bindings

zfp Documentation, Release 1.0.1

* nw [integer,in] :: Number of array elements in w dimension

subroutine zFORp_field_set_stride_1d(field, sx)
Wrapper for zfp_field_set_stride_1d()

Parameters
* field /[zFORp_field,in] :: Field metadata

* sx [integer,in] :: Stride in number of scalars

subroutine zFORp_field_set_stride_2d(field, sx, sy)
Wrapper for zfp_field_set_stride_2d()

Parameters
* field /[zFORp_field,in] :: Field metadata
* sx [integer,in] :: Stride in x dimension

* sy [integer,in] :: Stride in y dimension

subroutine zFORp_field_set_stride_3d(field, sx, sy, s7)
Wrapper for zfp_field_set_stride_3d()

Parameters
* field [zZFORp_field,in] :: Field metadata
* sx [integer,in] :: Stride in x dimension
* sy [integer,in] :: Stride in y dimension

* sz [integer,in] :: Stride in z dimension

subroutine zFORp_field_set_stride_4d(field, sx, sy, sz, sw)
Wrapper for zfp_field_set_stride_4d()

Parameters
« field /[zFORp_field,in] :: Field metadata
* sx [integer,in] :: Stride in x dimension
* sy [integer,in] :: Stride in y dimension
* sz [integer,in] :: Stride in z dimension

* sw [integer,in] :: Stride in w dimension

11.3. Functions and Subroutines

73

zfp Documentation, Release 1.0.1

function zFORp_field_set_metadata(field, encoded_metadata)
Wrapper for zfp_field _set_metadata()

Parameters
* field [zFORp_field,in] :: Field metadata
* encoded_metadata [integer (kind=8),in] :: Compact encoding of metadata

Return
is_success [integer] :: Indicate whether metadata was successfully set (1) or not (0)

11.3.7 Compression and Decompression

function zFORp_compress (stream, field)
Wrapper for zfp_compress ()

Parameters
 stream [zFORp_stream,in] :: Compressed stream
* field [zFORp_field,in] :: Field metadata

Return
bitstream_offset_bytes [integer (kind=8)] :: Bit stream offset after compression, in bytes, or
zero on failure

function zFORp_decompress (stream, field)
Wrapper for zfp_decompress ()

Parameters
* stream [zFORp_stream,in] :: Compressed stream
* field [zFORp_field,in] :: Field metadata

Return
bitstream_offset_bytes [integer (kind=38)] :: Bit stream offset after decompression, in bytes, or
zero on failure

function zFORp_write_header (stream, field, mask)
Wrapper for zfp_write_header ()

Parameters
* stream [zFORp_stream,in] :: Compressed stream
e field [zFORp_field,in] :: Field metadata
» mask [integer,in] :: Bit mask indicating which parts of header to write

Return
num_bits_written [integer (kind=8)] :: Number of header bits written or zero on failure

74 Chapter 11. Fortran Bindings

zfp Documentation, Release 1.0.1

function zFORp_read_header (stream, field, mask)
Wrapper for zfp_read_header ()

Parameters
* stream [zFORp_stream,in] :: Compressed stream
* field [zFORp_field,in] :: Field metadata
» mask [integer,in] :: Bit mask indicating which parts of header to read

Return
num_bits_read [integer (kind=8)] :: Number of header bits read or zero on failure

11.3. Functions and Subroutines

75

zfp Documentation, Release 1.0.1

76 Chapter 11. Fortran Bindings

CHAPTER
TWELVE

COMPRESSED-ARRAY C++ CLASSES

zfp’s compressed arrays are C++ classes, plus C wrappers around these classes, that implement random-accessible
single- and multi-dimensional floating-point arrays. Since its first release, zfp provides fixed-rate arrays, zfp: :array,
that support both read and write access to individual array elements. As of 1.0.0, zfp also supports read-only arrays,
zfp::const_array, for data that is static or is updated only infrequently. The read-only arrays support all of zfp’s
compression modes including variable-rate and lossless compression.

For fixed-rate arrays, the storage size, specified in number of bits per array element, is set by the user. Such arbitrary
storage is achieved via zfp’s lossy fixed-rate compression mode, by partitioning each d-dimensional array into blocks
of 4¢ values and compressing each block to a fixed number of bits. The more smoothly the array values vary along each
dimension, the more accurately zfp can represent them. In other words, these arrays are not suitable for representing
data where adjacent elements are not correlated. Rather, the expectation is that the array represents a regularly sampled
and predominantly continuous function, such as a temperature field in a physics simulation.

The rate, measured in number of bits per array element, can be specified in fractions of a bit (but see FAQs #/2 and #/8
for limitations). zfp supports 1D, 2D, 3D, and (as of version 1.0.0) 4D arrays. For higher-dimensional arrays, consider
using an array of zfp arrays. Note that array dimensions need not be multiples of four; zfp transparently handles partial
blocks on array boundaries.

Read-only arrays allow setting compression mode and parameters on construction, and can optionally be initialized
with uncompressed data. These arrays do not allow updating individual array elements, though the contents of the
whole array may be updated by re-compressing and overwriting the array. This may be useful in applications that
decompress the whole array, perform a computation that updates its contents (e.g., a stencil operation that advances
the solution of a PDE), and then compress to memory the updated array.

The C++ templated array classes are implemented entirely as header files that call the zfp C library to perform com-
pression and decompression. These arrays cache decompressed blocks to reduce the number of compression and de-
compression calls. Whenever an array value is read, the corresponding block is first looked up in the cache, and if found
the uncompressed value is returned. Otherwise the block is first decompressed and stored in the cache. Whenever an
array element is written (whether actually modified or not), a “dirty bit” is set with its cached block to indicate that the
block must be compressed back to persistent storage when evicted from the cache.

This section documents the public interface to the array classes, including base classes and member accessor classes
like proxy references/pointers, iterators, and views.

The following sections are available:
* Read-Write Fixed-Rate Arrays
* Read-Only Variable-Rate Arrays
* Caching
e Serialization
* References

e Pointers

77

zfp Documentation, Release 1.0.1

e [terators
e Views
e Codec

o [ndex

12.1 Read-Write Fixed-Rate Arrays

There are eight array classes for 1D, 2D, 3D, and 4D read-write arrays, each of which can represent single- or double-
precision values. Although these arrays store values in a form different from conventional single- and double-precision
floating point, the user interacts with the arrays via floats and doubles.

The array classes can often serve as direct substitutes for C/C++ single- and multi-dimensional floating-point arrays
and STL vectors, but have the benefit of allowing fine control over storage size. All classes below belong to the zfp
namespace.

Note: Much of the compressed-array API was modified in zfp 1.0.0 to support 64-bit indexing of very large arrays.
In particular, array dimensions and indices now use the size_t type instead of uint and strides use the ptrdiff_t
type instead of int.

12.1.1 Base Class

class array

Virtual base class for common array functionality.

zfp_type array: :scalar_type() const
Return the underlying scalar type (zfp_type) of the array.

uint array: :dimensionality () const

Return the dimensionality (aka. rank) of the array: 1, 2, 3, or 4.

array::header array: :get_header() const

Deprecated function as of zfp 1.0.0. See the Header section on how to construct a header.

static array *array: :construct (const header &h, const void *buffer = 0, size_t buffer_size_bytes = 0)

Construct a compressed-array object whose scalar type, dimensions, and rate are given by the /eader h. Return
a base class pointer upon success. The optional buffer points to compressed data that, when passed, is copied
into the array. If buffer is absent, the array is default initialized with all zeroes. The optional buffer_size_bytes
parameter specifies the buffer length in bytes. When passed, a comparison is made to ensure that the buffer size
is at least as large as the size implied by the header. If this function fails for any reason, an exception is thrown.

78 Chapter 12. Compressed-Array C++ Classes

zfp Documentation, Release 1.0.1

12.1.2 Common Methods

The following methods are common to 1D, 2D, 3D, and 4D arrays, but are implemented in the array class specific to
each dimensionality rather than in the base class.

size_t array: :size() const

Total number of elements in array, e.g., nx X ny X nz for 3D arrays.

double array: :rate() const
Return rate in bits per value.

double array: :set_rate(double rate)

Set desired compression rate in bits per value. Return the closest rate supported. See FAQ #/2 and FAQ #/8 for
discussions of the rate granularity. This method destroys the previous contents of the array.

size_t array: :size_bytes (uint mask = ZFP_DATA_ALL) const

Return storage size of components of array data structure indicated by mask. The mask is constructed via bitwise
OR of predefined constants. Available as of zfp 1.0.0.

size_t array: :compressed_size() const

Return number of bytes of storage for the compressed data. This amount does not include the small overhead
of other class members or the size of the cache. Rather, it reflects the size of the memory buffer returned by
compressed_data().

void *array: :compressed_data() const

Return pointer to compressed data for read or write access. The size of the buffer is given by
compressed_size().

Note: As of zfp 1.0.0, the return value is void* rather than uchar¥* to simplify pointer conversion and to dispel any
misconception that the compressed data needs only uchar alignment. Compressed streams are always word aligned
(see stream_word_bits and BIT_STREAM_WORD_TYPE).

size_t array: :cache_size() const

Return the cache size in number of bytes.

void array: :set_cache_size(size_t bytes)

Set minimum cache size in bytes. The actual size is always a power of two bytes and consists of at least one
block. If bytes is zero, then a default cache size is used, which requires the array dimensions to be known.

12.1. Read-Write Fixed-Rate Arrays 79

zfp Documentation, Release 1.0.1

void array: :clear_cache() const
Empty cache without compressing modified cached blocks, i.e., discard any cached updates to the array.

virtual void array: : flush_cache() const

Flush cache by compressing all modified cached blocks back to persistent storage and emptying the cache. This
method should be called before writing the compressed representation of the array to disk, for instance.

void array: :get(Scalar *p) const

Decompress entire array and store at p, for which sufficient storage must have been allocated. The uncompressed
array is assumed to be contiguous (with default strides) and stored in the usual “row-major” order, i.e., with x
varying faster than y, y varying faster than z, etc.

void array: :set(const Scalar *p)

Initialize array by copying and compressing data stored at p. The uncompressed data is assumed to be stored as
in the get () method. If p = 0, then the array is zero-initialized.

const_reference array: :operator[] (size_t index) const

o

Return const reference to scalar stored at given flat index (inspector). For a 3D array, index = x + nx * (y
+ ny * z).

Note: As of zfp 1.0.0, the return value is no longer Scalar but is a const reference to the corresponding array element
(conceptually equivalent to const Scalar&). This API change was necessary to allow obtaining a const pointer to
the element when the array itself is const qualified, e.g., const_pointer p = &a[index];.

reference array: :operator[] (size_t index)

Return proxy reference to scalar stored at given flat index (mutator). For a 3D array, index = x + nx * (y +
ny * z).

iterator array: :begin()

Return random-access mutable iterator to beginning of array.

iterator array: :end()

Return random-access mutable iterator to end of array. As with STL iterators, the end points to a virtual element
just past the last valid array element.

const_iterator array: :begin() const

const_iterator array: :cbegin() const
Return random-access const iterator to beginning of array.

80 Chapter 12. Compressed-Array C++ Classes

zfp Documentation, Release 1.0.1

const_iterator array: :end() const

const_iterator array: :cend() const

Return random-access const iterator to end of array.

Note: Const references, pointers, and iterators are available as of zfp 1.0.0.

12.1.3 1D, 2D, 3D, and 4D Arrays

Below are classes and methods specific to each array dimensionality and template scalar type (float or double).
Since the classes and methods share obvious similarities regardless of dimensionality, only one generic description for
all dimensionalities is provided.

Note: In the class declarations below, the class template for the scalar type is omitted for readability, e.g., class
arrayl is used as shorthand for template <typename Scalar> class arrayl. Wherever the type Scalar ap-
pears, it refers to this template argument.

class arrayl : public array
class array?2 : public array
class array3 : public array

class array4 : public array

This is a 1D, 2D, 3D, or 4D array that inherits basic functionality from the generic array base class. The
template argument, Scalar, specifies the floating type returned for array elements. The suffixes £ and d can also
be appended to each class to indicate float or double type, e.g., array1f is a synonym for arrayl<float>.

class arrayANY : public array

Fictitious class used to refer to any one of arrayl, array2, array3, and array4. This class is not part of the
zfp APL

arrayl::arrayl()
array2::array2()
array3::array3(Q)

array4::array4()

Default constructor. Creates an empty array whose size and rate are both zero.

Note: The default constructor is useful when the array size or rate is not known at time of construction. Before the array
can become usable, however, it must be resized and its rate must be set via array: :set_rate(). These two tasks can
be performed in either order. Furthermore, the desired cache size should be set using array: :set_cache_size(),
as the default constructor creates a cache that holds only one zfp block, i.e., the minimum possible.

arrayl::arrayl(size_t n, double rate, const Scalar *p = 0, size_t cache_size = 0)

12.1. Read-Write Fixed-Rate Arrays 81

zfp Documentation, Release 1.0.1

array2::array2(size_t nx, size_t ny, double rate, const Scalar *p = 0, size_t cache_size = 0)
array3::array3(size_t nx, size_t ny, size_t nz, double rate, const Scalar *p = 0, size_t cache_size = 0)

array4::array4(size_t nx, size_t ny, size_t nz, size_t nw, double rate, const Scalar *p = 0, size_t cache_size = 0)

Constructor of array with dimensions n (1D), nx X ny (2D), nx x ny x nz (3D), or nx X ny X nz x nw (4D)
using rate bits per value, at least cache_size bytes of cache, and optionally initialized from flat, uncompressed
array p. If cache_size is zero, a default cache size suitable for the array dimensions is chosen.

arrayl::arrayl(const array::header &h, const void *buffer = 0, size_t buffer_size_bytes = 0)
array2::array2(const array::header &h, const void *buffer = 0, size_t buffer_size_bytes = 0)
array3::array3(const array::header &h, const void *buffer = 0, size_t buffer_size_bytes = 0)

array4::array4(const array::header &h, const void *buffer = 0, size_t buffer_size_bytes = 0)

Constructor from previously serialized compressed array. The header, h, contains array metadata, while the
optional buffer points to the compressed data that is to be copied to the array. The optional buffer_size_bytes
parameter specifies the buffer length. If the constructor fails, an exception is thrown. See array: : construct ()
for further details on the buffer and buffer_size_bytes parameters.

arrayl::arrayl(const arrayl &a)
array2::array2(const array? &a)
array3::array3(const array3 &a)

array4::array4(const array4 &a)
Copy constructor. Performs a deep copy.

virtual arrayl::~arrayl()
virtual array2: :~array2()
virtual array3: :~array3()

virtual array4: :~array4()
Virtual destructor (allows for inheriting from zfp arrays).

arrayl &arrayl: :operator=_const arrayl &a)
array? &array2: :operator=(_const array? &a)
array3 &array3: :operator=_const array3 &a)

array4 &array4: :operator=_const array4 &a)
Assignment operator. Performs a deep copy.

size_t array2::size_x() const

82 Chapter 12. Compressed-Array C++ Classes

zfp Documentation, Release 1.0.1

size_t array2:
size_t array3:
size_t array3:
size_t array3:
size_t array4:
size_t array4:
size_t array4:

size_t array4:

:size_y () const
:size_x() const
:size_y () const
:size_z () const
:size_x() const
:size_y () const
:size_z () const

:size_w() const

Return array dimensions.

void arrayl::resize(size_t n, bool clear = true)
void array2::resize(size_t nx, size_t ny, bool clear = true)
void array3: :resize(size_t nx, size_t ny, size_t nz, bool clear = true)

void array4: :resize(size_t nx, size_t ny, size_t nz, size_t nw, bool clear = true)

Resize the array (all previously stored data will be lost). If clear is true, then the array elements are all initialized
to zero.

Note: It is often desirable (though not a requirement) to also set the cache size when resizing an array, e.g., in
proportion to the array size; see array: :set_cache_size(). This is particularly important when the array is default
constructed, which initializes the cache size to the minimum possible of only one zfp block.

const_reference arrayl: :operator() (size_t i) const
const_reference array?2: :operator() (size_t i, size_t j) const
const_reference array3: :operator () (size_t i, size_t j, size_t k) const

const_reference array4: :operator () (size_t i, size_t j, size_t k, size_t 1) const
Return const reference to element stored at multi-dimensional index given by i, j, k, and [(inspector).

Note: As of zfp 1.0.0, the return value is no longer Scalar but is a const reference to the corresponding array element
(essentially equivalent to const Scalar&). This API change was necessary to allow obtaining a const pointer to the
element when the array itself is const qualified, e.g., const_pointer p = &a(i, j, k);.

reference arrayl: :operator () (size_t i)
reference array2: :operator () (size_t i, size_t j)
reference array3: :operator() (size_t i, size_t j, size_t k)

reference array4: :operator () (size_t i, size_t j, size_t k, size_t 1)

Return proxy reference to scalar stored at multi-dimensional index given by i, j, k, and [(mutator).

12.1. Read-Write Fixed-Rate Arrays 83

zfp Documentation, Release 1.0.1

12.2 Read-Only Variable-Rate Arrays

Read-only arrays are preferable in applications that store static data, e.g., constant tables or simulation output, or data
that is updated only periodically as a whole, such as when advancing the solution of a partial differential equation.
Because such updates have to be applied to the whole array, one may choose to tile large arrays into smaller zfp arrays
to support finer granularity updates. Read-only arrays have the benefit of supporting all of zfp’s compression modes,
most of which provide higher accuracy per bit stored than fixed-rate mode.

The read-only arrays share an API with the read-write fixed-rate arrays, with only a few differences:

¢ All methods other than those that specify array-wide settings, such as compression mode and parameters, array
dimensions, and array contents, are const qualified. There are, thus, no methods for obtaining a writeable
reference, pointer, or iterator. Consequently, one may not initialize such arrays one element at a time. Rather,
the user initializes the whole array by passing a pointer to uncompressed data.

* Whereas the constructors for fixed-rate arrays accept a rate parameter, the read-only arrays allow specifying any
compression mode and corresponding parameters (if any) via a zfp_config object.

» Additional methods are available for setting and querying compression mode and parameters after construction.

» Read-only arrays are templated on a block index class that encodes the bit offset to each block of data. Multiple
index classes are available that trade compactness and speed of access. The default hybrid4 index represents
64-bit offsets using only 24 bits of amortized storage per block. An “implicit” index is available for fixed-rate
read-only arrays, which computes rather than stores offsets to equal-sized blocks.

Note: Whereas variable-rate compression almost always improves accuracy per bit of compressed data over fixed rate,
one should also weigh the storage and compute overhead associated with the block index needed for variable-rate stor-
age. The actual storage overhead can be determined by passing ZFP_DATA_INDEX to const_array: :size_bytes().
This overhead tends to be small for 3D and 4D arrays.

Array initialization may be done at construction time, by passing a pointer to uncompressed data, or via the method
const_array: :set(), which overwrites the contents of the whole array. This method may be called more than once
to update (i.e., re-initialize) the array.

Read-only arrays support a subset of references, pointers, iterators, and views; in particular those with a const_ prefix.

Currently, not all capabilities of read-write arrays are available for read-only arrays. For example, (de)serialization and
construction from a view have not yet been implemented, and there are no C bindings.

Read-only arrays derive from the array base class. Additional methods are documented below.

class const_arrayl : public array
class const_array?2 : public array
class const_array3 : public array

class const_array4 : public array

1D, 2D, 3D, or 4D read-only array that inherits basic functionality from the generic array base class. The
template argument, Scalar, specifies the floating type returned for array elements. The suffixes £ and d
can also be appended to each class to indicate float or double type, e.g., const_arraylf is a synonym for
const_arrayl<float>.

class const_array : public array

Fictitious class used to denote one of the 1D, 2D, 3D, and 4D read-only array classes. This pseudo base class
serves only to document the API shared among the four arrays.

84 Chapter 12. Compressed-Array C++ Classes

zfp Documentation, Release 1.0.1

const_arrayl::const_arrayl()
const_array2::const_array2()
const_array3::const_array3()

const_array4::const_array4()

Default constructor. Creates an empty array whose size is zero and whose compression mode is unspecified.
The array’s cache size is initialized to the minimum possible, which can have performance implications; see this
note.

const_arrayl::const_arrayl(size_t n, const zfp_config &config, const Scalar *p = 0, size_t cache_size = 0)

const_array2::const_array2(size_t nx, size_t ny, const zfp_config &config, const Scalar *p = 0, size_t
cache_size = 0)

const_array3::const_array3(size_t nx, size_t ny, size_t nz, const zfp_config &config, const Scalar *p = 0,
size_t cache_size = 0)

const_array#4::const_array4(size_t nx, size_t ny, size_t nz, size_t nw, const zfp_config &config, const Scalar
*p =0, size_t cache_size = 0)

Constructor of array with dimensions n (1D), nx x ny (2D), nx X ny X nz (3D), or nx x ny x nz X nw (4D). The
compression mode and parameters are given by config (see configuration). The array uses at least cache_size
bytes of cache, and is optionally initialized from flat, uncompressed array p. If cache_size is zero, a default cache
size suitable for the array dimensions is chos