
zfp Documentation
Release 0.5.2

Peter Lindstrom

Sep 28, 2017





Contents

1 Introduction 1

2 Overview 3

3 License 5

4 Installation 7
4.1 GNU Builds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 CMake Builds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.3 Compile-Time Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 Algorithm 11

6 Compression Modes 13
6.1 Expert Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.2 Fixed-Rate Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.3 Fixed Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.4 Fixed Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

7 High-Level C API 17
7.1 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.2 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.3 Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.4 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

8 Low-Level C API 23
8.1 Stream Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8.2 Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
8.3 Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
8.4 Utility Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

9 Bit Stream API 29
9.1 Strided Streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
9.2 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
9.3 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
9.4 Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
9.5 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

i



10 Compressed Arrays 33
10.1 Array Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
10.2 Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
10.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
10.4 Pointers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
10.5 Iterators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

11 Tutorial 41
11.1 High-Level C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
11.2 Low-Level C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
11.3 Compressed C++ Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

12 File Compressor 51
12.1 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

13 Code Examples 55
13.1 Simple Compressor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
13.2 Diffusion Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
13.3 Speed Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
13.4 PGM Image Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
13.5 In-place Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
13.6 Iterators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

14 Regression Tests 59

15 FAQ 61

16 Troubleshooting 73

17 Limitations 79

18 Future Directions 81

19 Contributors 83

20 Release Notes 85

ii



CHAPTER 1

Introduction

zfp is an open source C/C++ library for compressed numerical arrays that support high throughput read and write
random access. zfp also supports streaming compression of integer and floating-point data, e.g., for applications that
read and write large data sets to and from disk.

zfp was developed at Lawrence Livermore National Laboratory and is loosely based on the algorithm described in the
following paper:

Peter Lindstrom
“Fixed-Rate Compressed Floating-Point Arrays“
IEEE Transactions on Visualization and Computer Graphics
20(12):2674-2683, December 2014
doi:10.1109/TVCG.2014.2346458

zfp was originally designed for floating-point arrays only, but has been extended to also support integer data, and could
for instance be used to compress images and quantized volumetric data. To achieve high compression ratios, zfp uses
lossy but optionally error-bounded compression. Although bit-for-bit lossless compression of floating-point data is
not always possible, zfp is usually accurate to within machine epsilon in near-lossless mode.

zfp works best for 2D and 3D arrays that exhibit spatial correlation, such as continuous fields from physics simulations,
images, regularly sampled terrain surfaces, etc. Although zfp also provides a 1D array class that can be used for 1D
signals such as audio, or even unstructured floating-point streams, the compression scheme has not been well optimized
for this use case, and rate and quality may not be competitive with floating-point compressors designed specifically
for 1D streams.

zfp is freely available as open source under a BSD license. For more information on zfp and comparisons with other
compressors, please see the zfp website. For questions, comments, requests, and bug reports, please contact Peter
Lindstrom.

1

https://www.llnl.gov
https://www.researchgate.net/publication/264417607_Fixed-Rate_Compressed_Floating-Point_Arrays
http://doi.org/10.1109/TVCG.2014.2346458
https://computation.llnl.gov/projects/floating-point-compression
mailto:pl@llnl.gov
mailto:pl@llnl.gov


zfp Documentation, Release 0.5.2

2 Chapter 1. Introduction



CHAPTER 2

Overview

zfp is a compressor for integer and floating-point data stored in multidimensional arrays. The compressor is primarily
lossy, meaning that the numerical values are usually only approximately represented, though the user may specify
error tolerances to limit the amount of loss. Lossless compression, where values are represented exactly, is possible in
some circumstances.

The zfp software consists of three main components: a C library for compressing whole arrays (or smaller pieces
of arrays); C++ classes that implement compressed arrays; and a command-line compression tool and other code
examples. zfp has also been incorporated into several independently developed plugins for interfacing zfp with popular
I/O libraries and visualization tools such as ADIOS, HDF5, and VTK.

The typical user will interact with zfp via one or more of those components, specifically

• Via the C API when doing I/O in an application or otherwise performing data (de)compression online.

• Via zfp‘s C++ in-memory compressed array classes when performing computations on very large arrays that
demand random access to array elements, e.g. in visualization, data analysis, or even in numerical simulation.

• Via the zfp command-line tool when compressing binary files offline.

• Via one of the I/O libraries or visualization tools that support zfp, e.g.

– ADIOS plugin

– HDF5 plugin

– VTK plugin

In all cases, it is important to know how to use zfp‘s compression modes as well as what the limitations of zfp are.
Although it is not critical to understand the compression algorithm itself, having some familiarity with its major
components may help understand what to expect and how zfp‘s parameters influence the result.

zfp compresses d-dimensional (1D, 2D, and 3D) arrays of integer or floating-point values by partitioning the array into
blocks of 4d values, i.e., 4, 16, or 64 values for 1D, 2D, and 3D arrays, respectively. Each such block is (de)compressed
independently into a fixed- or variable-length bit string, and these bit strings are concatenated into a single stream of
bits.

zfp usually truncates each bit string to a fixed number of bits to meet a storage budget or to some variable length
needed to meet a given error tolerance, as dictated by the compressibility of the data. The bit string representing any

3

https://www.olcf.ornl.gov/center-projects/adios/
https://support.hdfgroup.org
http://www.vtk.org/
https://github.com/suchyta1/AtoZ
https://github.com/LLNL/H5Z-ZFP
https://gitlab.kitware.com/vtk/vtk/tree/master/ThirdParty/zfp


zfp Documentation, Release 0.5.2

given block may be truncated at any point and still yield a valid approximation. The early bits are most important;
later bits progressively refine the approximation, similar to how the last few bits in a floating-point number have less
significance than the first several bits and can often be discarded (zeroed) with limited impact on accuracy.

The next several sections cover information on the zfp algorithm and its parameters; the C API; the compressed array
classes; examples of how to perform compression and work with the classes; how to use the binary file compressor;
and code examples that further illustrate how to use zfp. The documentation concludes with frequently asked questions
and troubleshooting, as well as current limitations and future development directions.

For questions not answered here, please contact Peter Lindstrom.

4 Chapter 2. Overview

mailto:pl@llnl.gov


CHAPTER 3

License

Copyright (c) 2014-2017, Lawrence Livermore National Security, LLC.
Produced at the Lawrence Livermore National Laboratory.
Written by Peter Lindstrom.
LLNL-CODE-663824.
All rights reserved.

This file is part of the zfp library. For details, see http://computation.llnl.gov/casc/zfp/.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the disclaimer
below.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the disclaimer
(as noted below) in the documentation and/or other materials provided with the distribution.

3. Neither the name of the LLNS/LLNL nor the names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL LAWRENCE LIVERMORE NATIONAL SECURITY, LLC, THE U.S. DEPARTMENT OF ENERGY OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFT-
WARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Additional BSD Notice

5

http://computation.llnl.gov/casc/zfp/


zfp Documentation, Release 0.5.2

1. This notice is required to be provided under our contract with the U.S. Department of Energy (DOE). This work
was produced at Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 with the DOE.

2. Neither the United States Government nor Lawrence Livermore National Security, LLC nor any of their employees,
makes any warranty, express or implied, or assumes any liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately-owned rights.

3. Also, reference herein to any specific commercial products, process, or services by trade name, trademark, man-
ufacturer or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or Lawrence Livermore National Security, LLC. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States Government or Lawrence Livermore
National Security, LLC, and shall not be used for advertising or product endorsement purposes.

6 Chapter 3. License



CHAPTER 4

Installation

zfp consists of three distinct parts: a compression library written in C, a set of C++ header files that implement
compressed arrays, and a set of C and C++ examples. The main compression codec is written in C and should
conform to both the ISO C89 and C99 standards. The C++ array classes are implemented entirely in header files and
can be included as is, but since they call the compression library, applications must link with libzfp.

On Linux, macOS, and MinGW, zfp is easiest compiled using gcc and gmake. CMake support is also available, e.g.
for Windows builds. See below for instructions on GNU and CMake builds.

zfp has successfully been built and tested using these compilers:

• gcc versions 4.4.7, 4.7.2, 4.8.2, 4.9.2, 5.4.1, 6.3.0

• icc versions 12.0.5, 12.1.5, 15.0.4, 16.0.1, 17.0.0, 18.0.0

• clang version 3.6.0

• xlc version 12.1

• MinGW version 5.3.0

• Visual Studio versions 14.0 (2015), 14.1 (2017)

NOTE: zfp requires 64-bit compiler and operating system support.

GNU Builds

To compile zfp using gcc, type:

make

from the zfp root directory. This builds libzfp as a static library as well as utilities and example programs. To
optionally create a shared library, type:

make shared

7

https://gcc.gnu.org


zfp Documentation, Release 0.5.2

and set LD_LIBRARY_PATH to point to lib. To test the compressor, type:

make test

If the compilation or regression tests fail, it is possible that some of the macros in the file Config have to be adjusted.
Also, the tests may fail due to minute differences in the computed floating-point fields being compressed (as indicated
by checksum errors). It is surprisingly difficult to portably generate a floating-point array that agrees bit-for-bit across
platforms. If most tests succeed and the failures result in byte sizes and error values reasonably close to the expected
values, then it is likely that the compressor is working correctly.

CMake Builds

To build zfp using CMake on Linux or macOS, start a Unix shell and type:

mkdir build
cd build
cmake ..
make

To also build the examples, replace the cmake line with:

cmake -DBUILD_EXAMPLES=ON ..

To build zfp using Visual Studio on Windows, start an MSBuild shell and type:

mkdir build
cd build
cmake ..
msbuild /p:Configuration=Release zfp.sln
msbuild /p:Configuration=Debug zfp.sln

This builds zfp in both debug and release mode. See the instructions for Linux on how to change the cmake line to
also build the example programs.

Compile-Time Macros

The behavior of zfp can be configured at compile time via a set of macros. For GNU builds, these macros are set in
the file Config. For CMake builds, use the -D option on the cmake line as in the example above.

ZFP_INT64

ZFP_INT64_SUFFIX

ZFP_UINT64

ZFP_UINT64_SUFFIX
64-bit signed and unsigned integer types and their literal suffixes. Platforms on which long int is 32 bits
wide may require long long int as type and ll as suffix. These macros are relevant only when compiling
in C89 mode. When compiling in C99 mode, integer types are taken from stdint.h. Defaults: long int,
l, unsigned long int, and ul, respectively.

ZFP_WITH_ALIGNED_ALLOC
Use aligned memory allocation in an attempt to align compressed blocks on hardware cache lines. Default:
undefined/off.

8 Chapter 4. Installation

https://cmake.org
https://msdn.microsoft.com/en-us/library/ms164311.aspx


zfp Documentation, Release 0.5.2

ZFP_WITH_CACHE_TWOWAY
Use a two-way skew-associative rather than direct-mapped cache. This incurs some overhead that may be offset
by better cache utilization. Default: undefined/off.

ZFP_WITH_CACHE_FAST_HASH
Use a simpler hash function for cache line lookup. This is faster but may lead to more collisions. Default:
undefined/off.

ZFP_WITH_CACHE_PROFILE
Enable cache profiling to gather and print statistics on cache hit and miss rates. Default: undefined/off.

BIT_STREAM_WORD_TYPE
Unsigned integer type used for buffering bits. Wider types tend to give higher performance at the expense
of lower bit rate granularity. For portability of compressed files between little and big endian platforms,
BIT_STREAM_WORD_TYPE should be set to uint8. Default: uint64.

ZFP_BIT_STREAM_WORD_SIZE
CMake macro for indirectly setting BIT_STREAM_WORD_TYPE. Valid values are 8, 16, 32, 64. Default: 64.

BIT_STREAM_STRIDED
Enable support for strided bit streams that allow for non-contiguous memory layouts, e.g., to enable progressive
access. Default: undefined/off.

4.3. Compile-Time Macros 9



zfp Documentation, Release 0.5.2

10 Chapter 4. Installation



CHAPTER 5

Algorithm

The zfp lossy compression scheme is based on the idea of breaking a d-dimensional array into independent blocks
of 4d values each, e.g. 4 × 4 × 4 values in three dimensions. Each block is compressed/decompressed entirely
independently from all other blocks. In this sense, zfp is similar to current hardware texture compression schemes for
image coding implemented on graphics cards and mobile devices.

The compression scheme implemented in this version of zfp has evolved from the method described in the original pa-
per, and can conceptually be thought of as consisting of eight sequential steps (in practice some steps are consolidated
or exist only for illustrative purposes):

1. The d-dimensional array is partitioned into blocks of dimensions 4d. If the array dimensions are not multiples
of four, then blocks near the boundary are padded to the next multiple of four. This padding is invisible to the
application.

2. The independent floating-point values in a block are converted to what is known as a block-floating-point repre-
sentation, which uses a single, common floating-point exponent for all 4d values. The effect of this conversion
is to turn each floating-point value into a 31- or 63-bit signed integer. If the values in the block are all zero or
are smaller in magnitude than the fixed-accuracy tolerance (see below), then only a single bit is stored with the
block to indicate that it is “empty” and expands to all zeros. Note that the block-floating-point conversion and
empty-block encoding are not performed if the input data is represented as integers rather than floating-point
numbers.

3. The integers are decorrelated using a custom, high-speed, near orthogonal transform similar to the discrete
cosine transform used in JPEG image coding. The transform exploits separability and is implemented efficiently
in-place using the lifting scheme, requiring only 2.5 d integer additions and 1.5 d bit shifts by one per integer
in d dimensions. If the data is “smooth,” then this transform will turn most integers into small signed values
clustered around zero.

4. The signed integer coefficients are reordered in a manner similar to JPEG zig-zag ordering so that statistically
they appear in a roughly monotonically decreasing order. Coefficients corresponding to low frequencies tend to
have larger magnitude, and are listed first. In 3D, coefficients corresponding to frequencies i, j, k in the three
dimensions are ordered by i + j + k first, and then by i2 + j2 + k2.

5. The two’s complement signed integers are converted to their negabinary (base negative two) representation
using one addition and one bit-wise exclusive or per integer. Because negabinary has no dedicated single sign
bit, these integers are subsequently treated as unsigned.

11



zfp Documentation, Release 0.5.2

6. The bits that represent the list of 4d integers are transposed so that instead of being ordered by coefficient they
are ordered by bit plane, from most to least significant bit. Viewing each bit plane as an unsigned integer, with
the lowest bit corresponding to the lowest frequency coefficient, the anticipation is that the first several of these
transposed integers are small, because the coefficients are assumed to be ordered by magnitude.

7. The transform coefficients are compressed losslessly using embedded coding by exploiting the property that the
coefficients tend to have many leading zeros that need not be encoded explicitly. Each bit plane is encoded in
two parts, from lowest to highest bit. First the n lowest bits are emitted verbatim, where n depends on previous
bit planes and is initially zero. Then a variable-length representation of the remaining 4d − n bits, x, is encoded.
For such an integer x, a single bit is emitted to indicate if x = 0, in which case we are done with the current
bit plane. If not, then bits of x are emitted, starting from the lowest bit, until a one-bit is emitted. This triggers
another test whether this is the highest set bit of x, and the result of this test is output as a single bit. If not, then
the procedure repeats until all m of x‘s value bits have been output, where 2m-1 ≤ x < 2m. This can be thought
of as a run-length encoding of the zeros of x, where the run lengths are expressed in unary. The total number
of value bits, n, in this bit plane is then incremented by m before being passed to the next bit plane, which is
encoded by first emitting its n lowest bits. The assumption is that these bits correspond to n coefficients whose
most significant bits have already been output, i.e. these n bits are essentially random and not compressible.
Following this, the remaining 4d − n bits of the bit plane are run-length encoded as described above, which
potentially results in n being increased.

8. The embedded coder emits one bit at a time, with each successive bit potentially improving the quality of the
reconstructed signal. The early bits are most important and have the greatest impact on signal quality, with
the last few bits providing very small changes. The resulting compressed bit stream can be truncated at any
point and still allow for a valid approximate reconstruction of the original signal. The final step truncates the
bit stream in one of three ways: to a fixed number of bits (the fixed-rate mode); after some fixed number of bit
planes have been encoded (the fixed-precision mode); or until a lowest bit plane number has been encoded, as
expressed in relation to the common floating-point exponent within the block (the fixed-accuracy mode).

Various parameters are exposed for controlling the quality and compressed size of a block, and can be specified by the
user at a very fine granularity. These parameters are discussed here.

12 Chapter 5. Algorithm



CHAPTER 6

Compression Modes

zfp accepts one or more parameters for specifying how the data is to be compressed to meet various constraints on
accuracy or size. At a high level, there are four different compression modes that are mutually exclusive: expert,
fixed-rate, fixed-precision, and fixed-accuracy mode. The user has to select one of these modes and its corresponding
parameters. In streaming I/O applications, the fixed-accuracy mode is preferred, as it provides the highest quality (in
the absolute error sense) per bit of compressed storage.

The zfp_stream struct encapsulates the compression parameters and other information about the compressed
stream. Its members should not be manipulated directly. Instead, use the access functions (see the C API section)
for setting and querying them. The members that govern the compression parameters are described below.

Expert Mode

The most general mode is the ‘expert mode,’ which takes four integer parameters. Although most users will not
directly select this mode, we discuss it first since the other modes can be expressed in terms of setting expert mode
parameters.

The four parameters denote constraints that are applied to each block. Compression is terminated as soon as one of
these constraints is not met, which has the effect of truncating the compressed bit stream that encodes the block. The
four constraints are as follows:

uint zfp_stream.minbits
The minimum number of compressed bits used to represent a block. Usually this parameter is zero, unless each
and every block is to be stored using a fixed number of bits to facilitate random access, in which case it should
be set to the same value as zfp_stream.maxbits.

uint zfp_stream.maxbits
The maximum number of bits used to represent a block. This parameter sets a hard upper bound on compressed
block size, and governs the rate in fixed-rate mode. It may also be used as an upper storage limit to guard
against buffer overruns in combination with the accuracy constraints given by zfp_stream.maxprec and
zfp_stream.minexp.

uint zfp_stream.maxprec
The maximum number of bit planes encoded. This parameter governs the number of most significant uncom-

13



zfp Documentation, Release 0.5.2

pressed bits encoded per transform coefficient. It does not directly correspond to the number of uncompressed
mantissa bits for the floating-point or integer values being compressed, but is closely related. This is the pa-
rameter that specifies the precision in fixed-precision mode, and it provides a mechanism for controlling the
relative error. Note that this parameter selects how many bits planes to encode regardless of the magnitude of
the common floating-point exponent within the block.

int zfp_stream.minexp
The smallest absolute bit plane number encoded. The place value of each transform coefficient bit depends on the
common floating-point exponent, e, that scales the integer coefficients. If the most significant coefficient bit has
place value 2e, then the number of bit planes encoded is (one plus) the difference between e and zfp_stream.
minexp. As an analogy, consider representing currency in decimal. Setting zfp_stream.minexp to -2
would, if generalized to base-10, ensure that amounts are represented to cent accuracy, i.e. in units of 10-2

= $0.01. This parameter governs the absolute error in fixed-accuracy mode. Note that to achieve a certain
accuracy in the decompressed values, the zfp_stream.minexp value has to be conservatively lowered since
zfp‘s inverse transform may magnify the error (see also FAQs #20-22).

Care must be taken to allow all constraints to be met, as encoding terminates as soon as a single constraint is violated
(except zfp_stream.minbits, which is satisfied at the end of encoding by padding zeros).

As mentioned above, other combinations of constraints can be used. For example, to ensure that the compressed
stream is not larger than the uncompressed one, or that it fits within the amount of memory allocated, one may in
conjunction with other constraints set

maxbits = 4^d * CHAR_BIT * sizeof(Type)

where Type is either float or double. The minbits parameter is useful only in fixed-rate mode–when minbits = maxbits,
zero-bits are padded to blocks that compress to fewer than maxbits bits.

The effects of the above four parameters are best explained in terms of the three main compression modes supported
by zfp, described below.

Fixed-Rate Mode

In fixed-rate mode, each d-dimensional compressed block of 4d values is stored using a fixed number of bits given by
the parameter zfp_stream.maxbits. This number of compressed bits per block is amortized over the 4d values
to give a rate in bits per value:

rate = maxbits / 4^d

This rate is specified in the zfp executable via the -r option, and programmatically via zfp_stream_set_rate(),
as a floating-point value. Fixed-rate mode can also be achieved via the expert mode interface by setting

minbits = maxbits = (1 << (2 * d)) * rate
maxprec = ZFP_MAX_PREC
minexp = ZFP_MIN_EXP

Note that each block stores a bit to indicate whether the block is empty, plus a common exponent. Hence
zfp_stream.maxbits must be at least 9 for single precision and 12 for double precision.

Fixed-rate mode is needed to support random access to blocks, and also is the mode used in the implementation of
zfp‘s compressed arrays. Fixed-rate mode also ensures a predictable memory/storage footprint, but usually results in
far worse accuracy per bit than the variable-rate fixed-precision and fixed-accuracy modes. Use fixed-rate mode only
if you have to bound the compressed size or need random access to blocks.

14 Chapter 6. Compression Modes



zfp Documentation, Release 0.5.2

Fixed Precision

In fixed-precision mode, the number of bits used to encode a block may vary, but the number of bit planes (i.e. the
precision) encoded for the transform coefficients is fixed. To achieve the desired precision, use option -p with the zfp
executable or call zfp_stream_set_precision(). In expert mode, fixed precision is achieved by specifying
the precision in zfp_stream.maxprec and fully relaxing the size constraints, i.e.,

minbits = ZFP_MIN_BITS
maxbits = ZFP_MAX_BITS
maxprec = precision
minexp = ZFP_MIN_EXP

Fixed-precision mode is preferable when relative rather than absolute errors matter.

Fixed Accuracy

In fixed-accuracy mode, all transform coefficient bit planes up to a minimum bit plane number are encoded. (The
actual minimum bit plane is not necessarily zfp_stream.minexp, but depends on the dimensionality, d, of the
data. The reason for this is that the inverse transform incurs range expansion, and the amount of expansion depends
on the number of dimensions.) Thus, zfp_stream.minexp should be interpreted as the base-2 logarithm of an
absolute error tolerance. In other words, given an uncompressed value, f, and a reconstructed value, g, the absolute
difference | f − g | is at most 2minexp. (Note that it is not possible to guarantee error tolerances smaller than machine
epsilon relative to the largest value within a block.) This error tolerance is not always tight (especially for 3D arrays),
but can conservatively be set so that even for worst-case inputs the error tolerance is respected. To achieve fixed
accuracy to within ‘tolerance’, use option -a with the zfp executable or call zfp_stream_set_accuracy(). The
corresponding expert mode parameters are:

minbits = ZFP_MIN_BITS
maxbits = ZFP_MAX_BITS
maxprec = ZFP_MAX_PREC
minexp = floor(log2(tolerance))

As in fixed-precision mode, the number of bits used per block is not fixed but is dictated by the data. Use tolerance =
0 to achieve near-lossless compression. Fixed-accuracy mode gives the highest quality (in terms of absolute error) for
a given compression rate, and is preferable when random access is not needed.

6.3. Fixed Precision 15



zfp Documentation, Release 0.5.2

16 Chapter 6. Compression Modes



CHAPTER 7

High-Level C API

The C API is broken down into a high-level API, which handles compression of entire arrays, and a low-level-api for
processing individual blocks and managing the underlying bit stream.

The high-level API should be the API of choice for applications that compress and decompress entire arrays. A low-
level API exists for processing individual, possibly partial blocks as well as reduced-precision integer data less than
32 bits wide.

The following sections are available:

• Macros

• Types

• Constants

• Functions

– Compressed Stream

– Compression Parameters

– Array Metadata

– Compression and Decompression

Macros

ZFP_VERSION_MAJOR

ZFP_VERSION_MINOR

ZFP_VERSION_PATCH

ZFP_VERSION

17



zfp Documentation, Release 0.5.2

ZFP_VERSION_STRING
Macros identifying the zfp library version. ZFP_VERSION is a single integer constructed from the previ-
ous three macros. ZFP_VERSION_STRING is a string literal. See also zfp_library_version and
zfp_version_string.

ZFP_CODEC
Macro identifying the version of the compression CODEC. See also zfp_codec_version.

ZFP_MIN_BITS

ZFP_MAX_BITS

ZFP_MAX_PREC

ZFP_MIN_EXP
Default compression parameter settings that impose no constraints. The largest possible compressed block size,
corresponding to 3D blocks of doubles, is given by ZFP_MAX_BITS. See also zfp_stream.

ZFP_HEADER_MAGIC

ZFP_HEADER_META

ZFP_HEADER_MODE

ZFP_HEADER_FULL
Bit masks for specifying which portions of a header to output (if any). These constants should be bitwise
ORed together. Use ZFP_HEADER_FULL to output all header information available. The compressor and
decompressor must agree on which parts of the header to read/write.

ZFP_HEADER_META in essence encodes the information stored in the zfp_field struct, while
ZFP_HEADER_MODE encodes the compression parameters stored in the zfp_stream struct. The magic
can be used to uniquely identify the stream as a zfp stream, and includes the CODEC version.

See zfp_read_header() and zfp_write_header() for how to read and write header information.

ZFP_MAGIC_BITS

ZFP_META_BITS

ZFP_MODE_SHORT_BITS

ZFP_MODE_LONG_BITS

ZFP_HEADER_MAX_BITS

ZFP_MODE_SHORT_MAX
Number of bits used by each portion of the header. These macros are primarily informational and should
not be accessed by the user through the high-level API. For most common compression parameter set-
tings, only ZFP_MODE_SHORT_BITS bits of header information are stored to encode the mode (see
zfp_stream_mode()).

Types

zfp_stream
The zfp_stream struct encapsulates all information about the compressed stream for a single block or a
collection of blocks that represent an array. See the section on compression modes for a description of the
members of this struct.

typedef struct {
uint minbits; // minimum number of bits to store per block
uint maxbits; // maximum number of bits to store per block

18 Chapter 7. High-Level C API



zfp Documentation, Release 0.5.2

uint maxprec; // maximum number of bit planes to store
int minexp; // minimum floating point bit plane number to store
bitstream* stream; // compressed bit stream

} zfp_stream;

zfp_type
Enumerates the scalar types supported by the compressor, and is used to describe the uncompressed array.
The compressor and decompressor must use the same zfp_type, e.g. one cannot compress doubles and
decompress to floats or integers.

typedef enum {
zfp_type_none = 0, // unspecified type
zfp_type_int32 = 1, // 32-bit signed integer
zfp_type_int64 = 2, // 64-bit signed integer
zfp_type_float = 3, // single precision floating point
zfp_type_double = 4 // double precision floating point

} zfp_type;

zfp_field
The uncompressed array is described by the zfp_field struct, which encodes the array’s scalar type, dimen-
sions, and memory layout.

typedef struct {
zfp_type type; // scalar type (e.g. int32, double)
uint nx, ny, nz; // sizes (zero for unused dimensions)
int sx, sy, sz; // strides (zero for contiguous array a[nz][ny][nx])
void* data; // pointer to array data

} zfp_field;

For example, a static multidimensional C array declared as

double array[n1][n2][n3];

would be described by a zfp_field with members

type = zfp_type_double;
nx = n3; ny = n2; nz = n1;
sx = 1; sy = n3; sz = n2 * n3;
data = &array[0][0][0];

Constants

const uint zfp_codec_version
The version of the compression CODEC implemented by this version of the zfp library. The library can decom-
press files generated by the same CODEC only. To ensure that the zfp.h header matches the binary library
linked to, zfp_codec_version should match ZFP_CODEC.

const uint zfp_library_version
The library version. The binary library and headers are compatible if zfp_library_version matches
ZFP_VERSION .

const char* const zfp_version_string
A constant string representing the zfp library version and release date. One can search for this string in executa-
bles and libraries that use zfp to determine which version of the library the application was compiled against.

7.3. Constants 19



zfp Documentation, Release 0.5.2

Functions

size_t zfp_type_size(zfp_type type)
Return byte size of the given scalar type, e.g. zfp_type_size(zfp_type_float) = 4.

Compressed Stream

zfp_stream* zfp_stream_open(bitstream* stream)
Allocate compressed stream and associate it with bit stream for reading and writing bits to/from memory. stream
may be NULL and attached later via zfp_stream_set_bit_stream().

void zfp_stream_close(zfp_stream* stream)
Close and deallocate compressed stream. This does not affect the attached bit stream.

bitstream* zfp_stream_bit_stream(const zfp_stream* stream)
Return bit stream associated with compressed stream.

uint64 zfp_stream_mode(const zfp_stream* zfp)
Return compact encoding of compression parameters. If the return value is no larger than
ZFP_MODE_SHORT_MAX, then the least significant ZFP_MODE_SHORT_BITS (12 in the current version)
suffice to encode the parameters. Otherwise all 64 bits are needed, and the low ZFP_MODE_SHORT_BITS
bits will be all ones. Thus, this variable-length encoding can be used to economically encode and decode the
compression parameters, which is especially important if the parameters are to vary spatially over small regions.
Such spatially adaptive coding would have to be implemented via the low-level API.

void zfp_stream_params(const zfp_stream* stream, uint* minbits, uint* maxbits, uint* maxprec, int* min-
exp)

Query compression parameters. For any parameter not needed, pass NULL for the corresponding pointer.

size_t zfp_stream_compressed_size(const zfp_stream* stream)
Number of bytes of compressed storage. This function returns the current byte offset within the bit stream from
the beginning of the bit stream memory buffer. To ensure all buffered compressed data has been output call
zfp_stream_flush() first.

size_t zfp_stream_maximum_size(const zfp_stream* stream, const zfp_field* field)
Conservative estimate of the compressed byte size for the compression parameters stored in stream and the
array whose scalar type and dimensions are given by field. This function may be used to determine how large a
memory buffer to allocate to safely hold the entire compressed array.

void zfp_stream_set_bit_stream(zfp_stream* stream, bitstream* bs)
Associate bit stream with compressed stream.

void zfp_stream_rewind(zfp_stream* stream)
Rewind bit stream to beginning for compression or decompression.

Compression Parameters

double zfp_stream_set_rate(zfp_stream* stream, double rate, zfp_type type, uint dims, int wra)
Set rate for fixed-rate mode in compressed bits per value. The target scalar type and array dimensionality are
needed to correctly translate the rate to the number of bits per block. The parameter wra should be nonzero if
random access writes of blocks into the compressed bit stream is needed, for example for implementing zfp‘s
compressed arrays. This requires blocks to be aligned on bit stream word boundaries, and therefore constrains
the rate. The closest supported rate is returned, which may differ from the desired rate.

uint zfp_stream_set_precision(zfp_stream* stream, uint precision)
Set precision for fixed-precision mode. The precision specifies how many uncompressed bits per value to store,

20 Chapter 7. High-Level C API



zfp Documentation, Release 0.5.2

and indirectly governs the relative error. The actual precision is returned, e.g. in case the desired precision is out
of range. To preserve a certain floating-point mantissa or integer precision in the decompressed data, see FAQ
#21.

double zfp_stream_set_accuracy(zfp_stream* stream, double tolerance)
Set absolute error tolerance for fixed-accuracy mode. The tolerance ensures that values in the decompressed
array differ from the input array by no more than this tolerance (in all but exceptional circumstances; see FAQ
#17). This compression mode should be used only with floating-point (not integer) data.

int zfp_stream_set_mode(zfp_stream* stream, uint64 mode)
Set all compression parameters from compact integer representation. See zfp_stream_mode() for how to
encode the parameters. The return value is nonzero upon success.

int zfp_stream_set_params(zfp_stream* stream, uint minbits, uint maxbits, uint maxprec, int minexp)
Set all compression parameters directly. See the section on expert mode for a discussion of the parameters. The
return value is nonzero upon success.

Array Metadata

zfp_field* zfp_field_alloc()
Allocates and returns a default initialized zfp_field struct. The caller must free this struct using
zfp_field_free().

zfp_field* zfp_field_1d(void* pointer, zfp_type type, uint nx)
Allocate and return a field struct that describes an existing 1D array, a[nx], of nx uncompressed scalars of
given type stored at pointer, which may be NULL and specified later.

zfp_field* zfp_field_2d(void* pointer, zfp_type type, uint nx, uint ny)
Allocate and return a field struct that describes an existing 2D array, a[ny][nx], of nx × ny uncompressed
scalars of given type stored at pointer, which may be NULL and specified later.

zfp_field* zfp_field_3d(void* pointer, zfp_type type, uint nx, uint ny, uint nz)
Allocate and return a field struct that describes an existing 3D array, a[nz][ny][nx], of nx × ny × nz
uncompressed scalars of given type stored at pointer, which may be NULL and specified later.

void zfp_field_free(zfp_field* field)
Free zfp_field struct previously allocated by one of the functions above.

void* zfp_field_pointer(const zfp_field* field)
Return pointer to the first scalar in the array.

zfp_type zfp_field_type(const zfp_field* field)
Return array scalar type.

uint zfp_field_precision(const zfp_field* field)
Return scalar precision in number of bits, e.g. 32 for zfp_type_float.

uint zfp_field_dimensionality(const zfp_field* field)
Return array dimensionality (1, 2, or 3).

size_t zfp_field_size(const zfp_field* field, uint* size)
Return total number of scalars stored in the array, e.g. nx × ny × nz for a 3D array. If size is not NULL, then store
the number of scalars for each dimension, e.g. size[0] = nx; size[1] = ny; size[2] = nz for
a 3D array.

int zfp_field_stride(const zfp_field* field, int* stride)
Return zero if array is stored contiguously; nonzero if it is strided. If stride is not NULL, then store the stride for
each dimension, e.g. stride[0] = sx; stride[1] = sy; stride[2] = sz for a 3D array. See
below for more information on strides.

7.4. Functions 21



zfp Documentation, Release 0.5.2

uint64 zfp_field_metadata(const zfp_field* field)
Return 52-bit compact encoding of the scalar type and array dimensions.

void zfp_field_set_pointer(zfp_field* field, void* pointer)
Set pointer to first scalar in the array.

zfp_type zfp_field_set_type(zfp_field* field, zfp_type type)
Set array scalar type.

void zfp_field_set_size_1d(zfp_field* field, uint nx)
Specify dimensions of 1D array a[nx].

void zfp_field_set_size_2d(zfp_field* field, uint nx, uint ny)
Specify dimensions of 2D array a[ny][nx].

void zfp_field_set_size_3d(zfp_field* field, uint nx, uint ny, uint nz)
Specify dimensions of 3D array a[nz][ny][nx].

void zfp_field_set_stride_1d(zfp_field* field, int sx)
Specify stride for 1D array: sx = &a[1] - &a[0].

void zfp_field_set_stride_2d(zfp_field* field, int sx, int sy)
Specify strides for 2D array: sx = &a[0][1] - &a[0][0]; sy = &a[1][0] - &a[0][0].

void zfp_field_set_stride_3d(zfp_field* field, int sx, int sy, int sz)
Specify strides for 3D array: sx = &a[0][0][1] - &a[0][0][0]; sy = &a[0][1][0] -
&a[0][0][0]; sz = &a[1][0][0] - &a[0][0][0].

int zfp_field_set_metadata(zfp_field* field, uint64 meta)
Specify array scalar type and dimensions from compact 52-bit representation. Returns nonzero upon success.
See zfp_field_metadata() for how to encode meta.

Compression and Decompression

size_t zfp_compress(zfp_stream* stream, const zfp_field* field)
Compress the whole array described by field using parameters given by stream and then flush the stream. The
number of bytes of compressed storage is returned, if the stream were rewound before compression, and other-
wise the current byte offset within the bit stream. Zero is returned if compression failed.

int zfp_decompress(zfp_stream* stream, zfp_field* field)
Decompress from stream to array described by field and align the stream on the next word boundary. Nonzero
is returned upon success.

size_t zfp_write_header(zfp_stream* stream, const zfp_field* field, uint mask)
Write an optional header to the stream that encodes compression parameters, array metadata, etc. The header
information written is determined by the bit mask (see macros). The return value is the number of bits written,
or zero upon failure.

size_t zfp_read_header(zfp_stream* stream, zfp_field* field, uint mask)
Read header if one was previously written using zfp_write_header(). The return value is the number of
bits read, or zero upon failure. The caller must ensure that the bit mask agrees between header read and write
calls.

22 Chapter 7. High-Level C API



CHAPTER 8

Low-Level C API

The low-level C API provides functionality for compressing individual d-dimensional blocks of up to 4d values. If
a block is not complete, i.e. contains fewer than 4d values, then zfp‘s partial block support should be favored over
padding the block with, say, zeros or other fill values. The blocks (de)compressed need not be contiguous, but can be
gathered from or scatter to a larger array by setting appropriate strides.

The following topics are available:

• Stream Manipulation

• Encoder

– 1D Data

– 2D Data

– 3D Data

• Decoder

– 1D Data

– 2D Data

– 3D Data

• Utility Functions

Stream Manipulation

size_t zfp_stream_flush(zfp_stream* stream)
Flush bit stream to write out any buffered bits. This function must be must be called after the last encode call.
The bit stream is aligned on a stream word boundary following this call. The number of zero-bits written, if any,
is returned.

size_t zfp_stream_align(zfp_stream* stream)
Align bit stream on next word boundary. This function is analogous to zfp_stream_flush(), but for

23



zfp Documentation, Release 0.5.2

decoding. That is, wherever the encoder flushes the stream, the decoder should align it to ensure synchronization
between encoder and decoder. The number of bits skipped, if any, is returned.

Encoder

A function is available for encoding whole or partial blocks of each scalar type and dimensionality. These functions
return the number of bits of compressed storage for the block being encoded, or zero upon failure.

1D Data

uint zfp_encode_block_int32_1(zfp_stream* stream, const int32* block)

uint zfp_encode_block_int64_1(zfp_stream* stream, const int64* block)

uint zfp_encode_block_float_1(zfp_stream* stream, const float* block)

uint zfp_encode_block_double_1(zfp_stream* stream, const double* block)
Encode 1D contiguous block of 4 values.

uint zfp_encode_block_strided_int32_1(zfp_stream* stream, const int32* p, int sx)

uint zfp_encode_block_strided_int64_1(zfp_stream* stream, const int64* p, int sx)

uint zfp_encode_block_strided_float_1(zfp_stream* stream, const float* p, int sx)

uint zfp_encode_block_strided_double_1(zfp_stream* stream, const double* p, int sx)
Encode 1D complete block from strided array with stride sx.

uint zfp_encode_partial_block_strided_int32_1(zfp_stream* stream, const int32* p, uint nx,
int sx)

uint zfp_encode_partial_block_strided_int64_1(zfp_stream* stream, const int64* p, uint nx,
int sx)

uint zfp_encode_partial_block_strided_float_1(zfp_stream* stream, const float* p, uint nx,
int sx)

uint zfp_encode_partial_block_strided_double_1(zfp_stream* stream, const double* p,
uint nx, int sx)

Encode 1D partial block of size nx from strided array with stride sx.

2D Data

uint zfp_encode_block_int32_2(zfp_stream* stream, const int32* block)

uint zfp_encode_block_int64_2(zfp_stream* stream, const int64* block)

uint zfp_encode_block_float_2(zfp_stream* stream, const float* block)

uint zfp_encode_block_double_2(zfp_stream* stream, const double* block)
Encode 2D contiguous block of 4 × 4 values.

uint zfp_encode_block_strided_int32_2(zfp_stream* stream, const int32* p, int sx, int sy)

uint zfp_encode_block_strided_int64_2(zfp_stream* stream, const int64* p, int sx, int sy)

uint zfp_encode_block_strided_float_2(zfp_stream* stream, const float* p, int sx, int sy)

uint zfp_encode_block_strided_double_2(zfp_stream* stream, const double* p, int sx, int sy)
Encode 2D complete block from strided array with strides sx and sy.

24 Chapter 8. Low-Level C API



zfp Documentation, Release 0.5.2

uint zfp_encode_partial_block_strided_int32_2(zfp_stream* stream, const int32* p, uint nx,
uint ny, int sx, int sy)

uint zfp_encode_partial_block_strided_int64_2(zfp_stream* stream, const int64* p, uint nx,
uint ny, int sx, int sy)

uint zfp_encode_partial_block_strided_float_2(zfp_stream* stream, const float* p, uint nx,
uint ny, int sx, int sy)

uint zfp_encode_partial_block_strided_double_2(zfp_stream* stream, const double* p,
uint nx, uint ny, int sx, int sy)

Encode 2D partial block of size nx × ny from strided array with strides sx and sy.

3D Data

uint zfp_encode_block_int32_3(zfp_stream* stream, const int32* block)

uint zfp_encode_block_int64_3(zfp_stream* stream, const int64* block)

uint zfp_encode_block_float_3(zfp_stream* stream, const float* block)

uint zfp_encode_block_double_3(zfp_stream* stream, const double* block)
Encode 3D contiguous block of 4 × 4 × 4 values.

uint zfp_encode_block_strided_int32_3(zfp_stream* stream, const int32* p, int sx, int sy, int sz)

uint zfp_encode_block_strided_int64_3(zfp_stream* stream, const int64* p, int sx, int sy, int sz)

uint zfp_encode_block_strided_float_3(zfp_stream* stream, const float* p, int sx, int sy, int sz)

uint zfp_encode_block_strided_double_3(zfp_stream* stream, const double* p, int sx, int sy,
int sz)

Encode 3D complete block from strided array with strides sx, sy, and sz.

uint zfp_encode_partial_block_strided_int32_3(zfp_stream* stream, const int32* p, uint nx,
uint ny, uint nz, int sx, int sy, int sz)

uint zfp_encode_partial_block_strided_int64_3(zfp_stream* stream, const int64* p, uint nx,
uint ny, uint nz, int sx, int sy, int sz)

uint zfp_encode_partial_block_strided_float_3(zfp_stream* stream, const float* p, uint nx,
uint ny, uint nz, int sx, int sy, int sz)

uint zfp_encode_partial_block_strided_double_3(zfp_stream* stream, const double* p,
uint nx, uint ny, uint nz, int sx, int sy, int sz)

Encode 3D partial block of size nx × ny × nz from strided array with strides sx, sy, and sz.

Decoder

Each function below decompresses a single block and returns the number of bits of compressed storage consumed.
See corresponding encoder functions above for further details.

1D Data

uint zfp_decode_block_int32_1(zfp_stream* stream, int32* block)

uint zfp_decode_block_int64_1(zfp_stream* stream, int64* block)

uint zfp_decode_block_float_1(zfp_stream* stream, float* block)

8.3. Decoder 25



zfp Documentation, Release 0.5.2

uint zfp_decode_block_double_1(zfp_stream* stream, double* block)
Decode 1D contiguous block of 4 values.

uint zfp_decode_block_strided_int32_1(zfp_stream* stream, int32* p, int sx)

uint zfp_decode_block_strided_int64_1(zfp_stream* stream, int64* p, int sx)

uint zfp_decode_block_strided_float_1(zfp_stream* stream, float* p, int sx)

uint zfp_decode_block_strided_double_1(zfp_stream* stream, double* p, int sx)
Decode 1D complete block to strided array with stride sx.

uint zfp_decode_partial_block_strided_int32_1(zfp_stream* stream, int32* p, uint nx, int sx);

uint zfp_decode_partial_block_strided_int64_1(zfp_stream* stream, int64* p, uint nx, int sx);

uint zfp_decode_partial_block_strided_float_1(zfp_stream* stream, float* p, uint nx, int sx);

uint zfp_decode_partial_block_strided_double_1(zfp_stream* stream, double* p, uint nx, int sx);
Decode 1D partial block of size nx to strided array with stride sx.

2D Data

uint zfp_decode_block_int32_2(zfp_stream* stream, int32* block);

uint zfp_decode_block_int64_2(zfp_stream* stream, int64* block);

uint zfp_decode_block_float_2(zfp_stream* stream, float* block);

uint zfp_decode_block_double_2(zfp_stream* stream, double* block)
Decode 2D contiguous block of 4 × 4 values.

uint zfp_decode_block_strided_int32_2(zfp_stream* stream, int32* p, int sx, int sy);

uint zfp_decode_block_strided_int64_2(zfp_stream* stream, int64* p, int sx, int sy);

uint zfp_decode_block_strided_float_2(zfp_stream* stream, float* p, int sx, int sy);

uint zfp_decode_block_strided_double_2(zfp_stream* stream, double* p, int sx, int sy);
Decode 2D complete block to strided array with strides sx and sy.

uint zfp_decode_partial_block_strided_int32_2(zfp_stream* stream, int32* p, uint nx, uint ny, int sx, int sy);

uint zfp_decode_partial_block_strided_int64_2(zfp_stream* stream, int64* p, uint nx, uint ny, int sx, int sy);

uint zfp_decode_partial_block_strided_float_2(zfp_stream* stream, float* p, uint nx, uint ny, int sx, int sy);

uint zfp_decode_partial_block_strided_double_2(zfp_stream* stream, double* p, uint nx, uint ny, int sx, int sy);
Decode 2D partial block of size nx × ny to strided array with strides sx and sy.

3D Data

uint zfp_decode_block_int32_3(zfp_stream* stream, int32* block)

uint zfp_decode_block_int64_3(zfp_stream* stream, int64* block)

uint zfp_decode_block_float_3(zfp_stream* stream, float* block)

uint zfp_decode_block_double_3(zfp_stream* stream, double* block)
Decode 3D contiguous block of 4 × 4 × 4 values.

uint zfp_decode_block_strided_int32_3(zfp_stream* stream, int32* p, int sx, int sy, int sz)

uint zfp_decode_block_strided_int64_3(zfp_stream* stream, int64* p, int sx, int sy, int sz)

26 Chapter 8. Low-Level C API



zfp Documentation, Release 0.5.2

uint zfp_decode_block_strided_float_3(zfp_stream* stream, float* p, int sx, int sy, int sz)

uint zfp_decode_block_strided_double_3(zfp_stream* stream, double* p, int sx, int sy, int sz)
Decode 3D complete block to strided array with strides sx, sy, and sz.

uint zfp_decode_partial_block_strided_int32_3(zfp_stream* stream, int32* p, uint nx, uint ny,
uint nz, int sx, int sy, int sz)

uint zfp_decode_partial_block_strided_int64_3(zfp_stream* stream, int64* p, uint nx, uint ny,
uint nz, int sx, int sy, int sz)

uint zfp_decode_partial_block_strided_float_3(zfp_stream* stream, float* p, uint nx, uint ny,
uint nz, int sx, int sy, int sz)

uint zfp_decode_partial_block_strided_double_3(zfp_stream* stream, double* p, uint nx,
uint ny, uint nz, int sx, int sy, int sz)

Decode 3D partial block of size nx × ny × nz to strided array with strides sx, sy, and sz.

Utility Functions

These functions convert 8- and 16-bit signed and unsigned integer data to (by promoting) and from (by demoting)
32-bit integers that can be (de)compressed by zfp‘s int32 functions. These conversion functions are preferred over
simple casting since they eliminate the redundant leading zeros that would otherwise have to be compressed, and they
apply the appropriate bias for unsigned integer data.

void zfp_promote_int8_to_int32(int32* oblock, const int8* iblock, uint dims)

void zfp_promote_uint8_to_int32(int32* oblock, const uint8* iblock, uint dims)

void zfp_promote_int16_to_int32(int32* oblock, const int16* iblock, uint dims)

void zfp_promote_uint16_to_int32(int32* oblock, const uint16* iblock, uint dims)
Convert dims-dimensional contiguous block to 32-bit integer type.

void zfp_demote_int32_to_int8(int8* oblock, const int32* iblock, uint dims)

void zfp_demote_int32_to_uint8(uint8* oblock, const int32* iblock, uint dims)

void zfp_demote_int32_to_int16(int16* oblock, const int32* iblock, uint dims)

void zfp_demote_int32_to_uint16(uint16* oblock, const int32* iblock, uint dims)
Convert dims-dimensional contiguous block from 32-bit integer type.

8.4. Utility Functions 27



zfp Documentation, Release 0.5.2

28 Chapter 8. Low-Level C API



CHAPTER 9

Bit Stream API

zfp relies on low-level functions for bit stream I/O, e.g. for reading/writing single bits or groups of bits. zfp‘s bit
streams support random access (with some caveats) and, optionally, strided access. The functions read from and write
to main memory allocated by the user. Buffer overruns are for performance reasons not guarded against.

From an implementation standpoint, bit streams are read from and written to memory in increments of words of bits.
The constant power-of-two word size is configured at compile time, and is limited to 8, 16, 32, or 64 bits.

The bit stream API is publicly exposed and may be used to write additional information such as metadata into the
zfp compressed stream, as well as to manipulate whole or partial bit streams. Moreover, we envision releasing the bit
stream functions as a separate library in the future that may be used, for example, in other compressors.

Stream readers and writers are synchronized by making corresponding calls. For each write call, there is a corre-
sponding read call. This ensures that reader and writer agree on the position within the stream and the number of bits
buffered, if any. The API below reflects this duality.

A bit stream is either in read or write mode, or either, if rewound to the beginning. When in read mode, only read calls
should be made, and similarly for write mode.

Strided Streams

Bit streams may be strided by sequentially reading/writing a few words at a time and then skipping over some user-
specified number of words. This allows, for instance, zfp to interleave the first few bits of all compressed blocks in
order to support progressive access. To enable strided access, which does carry a small performance penalty, the macro
BIT_STREAM_STRIDED must be defined during compilation.

Strides are specified in terms of a block size–a power-of-two number of contiguous words–and a delta, which specifies
how many words to advance the stream by to get to the next contiguous block. These bit stream blocks are entirely
independent of the 4d blocks used for compression in zfp. Setting delta to zero ensures a non-strided, sequential layout.

29



zfp Documentation, Release 0.5.2

Macros

Two compile-time macros are used to influence the behavior: BIT_STREAM_WORD_TYPE and
BIT_STREAM_STRIDED. These are documented in the installation section.

Types

word
Bits are buffered and read/written in units of words. By default, the bit stream word type is 64 bits, but may
be set to 8, 16, or 32 bits by setting the macro BIT_STREAM_WORD_TYPE to uint8, uint16, or uint32,
respectively. Larger words tend to give higher throughput, while 8-bit words are needed to ensure endian
independence (see FAQ #11).

bitstream
The bit stream struct maintains all the state associated with a bit stream. This struct is passed to all bit stream
functions. Its members should not be accessed directly.

struct bitstream {
uint bits; // number of buffered bits (0 <= bits < word size)
word buffer; // buffer for incoming/outgoing bits (buffer < 2^bits)
word* ptr; // pointer to next word to be read/written
word* begin; // beginning of stream
word* end; // end of stream (currently unused)
size_t mask; // one less the block size in number of words (if BIT_STREAM_

→˓STRIDED)
ptrdiff_t delta; // number of words between consecutive blocks (if BIT_STREAM_

→˓STRIDED)
};

Constants

const size_t stream_word_bits
The number of bits in a word. The size of a flushed bit stream will be a multiple of this number of bits. See
BIT_STREAM_WORD_TYPE.

Functions

bitstream* stream_open(void* buffer, size_t bytes)
Allocate a bitstream struct and associate it with the memory buffer allocated by the caller.

void stream_close(bitstream* stream)
Close the bit stream and deallocate stream.

void* stream_data(const bitstream* stream)
Return pointer to the beginning of bit stream stream.

size_t stream_size(const bitstream* stream)
Return position of stream pointer in number of bytes, which equals the end of stream if no seeks have been
made. Note that additional bits may be buffered and not reported unless the stream has been flushed.

size_t stream_capacity(const bitstream* stream)
Return byte size of memory buffer associated with stream.

30 Chapter 9. Bit Stream API



zfp Documentation, Release 0.5.2

uint stream_read_bit(bitstream* stream)
Read a single bit from stream.

uint stream_write_bit(bitstream* stream, uint bit)
Write the least significant bit of bit to stream. bit should be one of 0 or 1.

uint64 stream_read_bits(bitstream* stream, uint n)
Read and return 0 ≤ n ≤ 64 bits from stream.

uint64 stream_write_bits(bitstream* stream, uint64 value, uint n)
Write 0 ≤ n ≤ 64 low bits of value to stream. Return any remaining bits from value, i.e. value >> n.

size_t stream_rtell(const bitstream* stream)
Return bit offset to next bit to be read.

size_t stream_wtell(const bitstream* stream)
Return bit offset to next bit to be written.

void stream_rewind(bitstream* stream)
Rewind stream to beginning of memory buffer. Following this call, the stream may either be read or written.

void stream_rseek(bitstream* stream, size_t offset)
Position stream for reading at given bit offset. This places the stream in read mode.

void stream_wseek(bitstream* stream, size_t offset)
Position stream for writing at given bit offset. This places the stream in write mode.

void stream_skip(bitstream* stream, uint n)
Skip over the next n bits, i.e. without reading them.

void stream_pad(bitstream* stream, uint n)
Append n zero-bits to stream.

size_t stream_align(bitstream* stream)
Align stream on next word boundary by skipping bits.

size_t stream_flush(bitstream* stream)
Write out any remaining buffered bits.

size_t stream_stride_block(const bitstream* stream)
Return stream block size in number of words. The block size is always one word unless strided streams are
enabled. See Strided Streams for more information.

ptrdiff_t stream_stride_delta(const bitstream* stream)
Return stream delta in number of words between blocks. See Strided Streams for more information.

int stream_set_stride(bitstream* stream, size_t block, ptrdiff_t delta)
Set block size in number of words and spacing in number of blocks for strided access. Requires
BIT_STREAM_STRIDED.

9.5. Functions 31



zfp Documentation, Release 0.5.2

32 Chapter 9. Bit Stream API



CHAPTER 10

Compressed Arrays

zfp‘s compressed arrays are C++ classes that implement random-accessible single- and multi-dimensional floating-
point arrays whose storage size, specified in number of bits per array element, is set by the user. Such arbitrary storage
is achieved via zfp‘s lossy fixed-rate compression mode, by partitioning each d-dimensional array into blocks of 4d

values and compressing each block to a fixed number of bits. The more smoothly the array values vary along each
dimension, the more accurately zfp can represent them. In other words, these arrays are not suitable for representing
data where adjacent elements are not correlated. Rather, the expectation is that the array represents a regularly sampled
and predominantly continuous function, such as a temperature field in a physics simulation.

The rate, measured in number of bits per array element, can be specified in fractions of a bit (but see FAQs #12 and
#18 for limitations). Note that array dimensions need not be multiples of four; zfp transparently handles partial blocks
on array boundaries.

The C++ templated array classes are implemented entirely as header files that call the zfp C library to perform com-
pression and decompression. These arrays cache decompressed blocks to reduce the number of compression and
decompression calls. Whenever an array value is read, the corresponding block is first looked up in the cache, and if
found the uncompressed value is returned. Otherwise the block is first decompressed and stored in the cache. When-
ever an array element is written (whether actually modified or not), a “dirty bit” is set with its cached block to indicate
that the block must be compressed back to persistent storage when evicted from the cache.

This section documents the public interface to the array classes, including base classes and member accessor classes
like proxy references/pointers and iterators.

Array Classes

Currently there are six array classes for 1D, 2D, and 3D arrays, each of which can represent single- or double-precision
values. Although these arrays store values in a form different from conventional single- and double-precision floating
point, the user interacts with the arrays via floats and doubles.

The array classes can often serve as direct substitutes for C/C++ single- and multi-dimensional floating-point arrays
and STL vectors, but have the benefit of allowing fine control over storage size. All classes below belong to the zfp
namespace.

33



zfp Documentation, Release 0.5.2

Base Class

class array
Virtual base class for common array functionality.

array::array(const array &a)
Copy constructor. Performs a deep copy. NOTE: Deep copies are not yet fully implemented.

array::~array()
Destructor.

array &array::operator=(const array &a)
Assignment operator–performs a deep copy of the whole array.

double array::rate() const
Return rate in bits per value.

double array::set_rate(double rate)
Set desired compression rate in bits per value. Return the closest rate supported. See FAQ #12 and FAQ #18 for
discussions of the rate granularity. This method destroys the previous contents of the array.

virtual void array::clear_cache() const
Empty cache without compressing modified cached blocks, i.e. discard any cached updates to the array.

virtual void array::flush_cache() const
Flush cache by compressing all modified cached blocks back to persistent storage and emptying the cache. This
method should be called before writing the compressed representation of the array to disk, for instance.

size_t array::compressed_size() const
Return number of bytes of storage for the compressed data. This amount does not include the small overhead
of other class members or the size of the cache. Rather, it reflects the size of the memory buffer returned by
compressed_data().

uchar *array::compressed_data() const
Return pointer to compressed data for read or write access. The size of the buffer is given by
compressed_size().

Common Methods

The following methods are common to 1D, 2D, and 3D arrays, but are implemented in the array class specific to each
dimensionality rather than in the base class.

size_t array::size() const
Total number of elements in array, e.g. nx × ny × nz for 3D arrays.

size_t array::cache_size() const
Return the cache size in number of bytes.

void array::set_cache_size(size_t csize)
Set minimum cache size in bytes. The actual size is always a power of two bytes and consists of at least one
block. If csize is zero, then a default cache size is used, which requires the array dimensions to be known.

void array::get(Scalar *p) const
Decompress entire array and store at p, for which sufficient storage must have been allocated. The uncompressed
array is assumed to be contiguous (with default strides) and stored in the usual “row-major” order, i.e. with x
varying faster than y and y varying faster than z.

void array::set(const Scalar *p)
Initialize array by copying and compressing data stored at p. The uncompressed data is assumed to be stored as
in the get() method.

34 Chapter 10. Compressed Arrays



zfp Documentation, Release 0.5.2

const Scalar &array::operator[](uint index) const
Return scalar stored at given flat index (inspector). For a 3D array, index = x + nx * (y + ny * z).

reference array::operator[](uint index)
Return proxy reference to scalar stored at given flat index (mutator). For a 3D array, index = x + nx *
(y + ny * z).

iterator array::begin()
Return iterator to beginning of array.

iterator array::end()
Return iterator to end of array. As with STL iterators, the end points to a virtual element just past the last valid
array element.

1D, 2D, and 3D Arrays

Below are classes and methods specific to each array dimensionality. Since the classes and methods share obvious
similarities regardless of dimensionality, only one generic description for all dimensionalities is provided.

template<typename Scalar>
class array1 : public array

template<typename Scalar>
class array2 : public array

template<typename Scalar>
class array3 : public array

This is a 1D/2D/3D array that inherits basic functionality from the generic array base class. The template
argument, Scalar, specifies the floating type returned for array elements. The suffixes f and d can also be
appended to each class to indicate float or double type, e.g. array1f is a synonym for array1<float>.

array1::array1()

array2::array2()

array3::array3()
Default constructor. Creates an empty array.

array1::array1(uint n, double rate, const Scalar *p = 0, size_t csize = 0)

array2::array2(uint nx, uint ny, double rate, const Scalar *p = 0, size_t csize = 0)

array3::array3(uint nx, uint ny, uint nz, double rate, const Scalar *p = 0, size_t csize = 0)
Constructor of array with dimensions n (1D), nx × ny (2D), or nx × ny × nz (3D) using rate bits per value, at
least csize bytes of cache, and optionally initialized from flat, uncompressed array p. If csize is zero, a default
cache size is chosen.

uint array2::size_x() const

uint array2::size_y() const

uint array3::size_x() const

uint array3::size_y() const

uint array3::size_z() const
Return array dimensions.

void array1::resize(uint n, bool clear = true)

void array2::resize(uint nx, uint ny, bool clear = true)

10.1. Array Classes 35



zfp Documentation, Release 0.5.2

void array3::resize(uint nx, uint ny, uint nz, bool clear = true)
Resize the array (all previously stored data will be lost). If clear is true, then the array elements are all initialized
to zero.

const Scalar &array1::operator()(uint i) const

const Scalar &array2::operator()(uint i, uint j) const

const Scalar &array3::operator()(uint i, uint j, uint k) const
Return scalar stored at multi-dimensional index given by i, j, and k (inspector).

reference array1::operator()(uint i)

reference array2::operator()(uint i, uint j)

reference array3::operator()(uint i, uint j, uint k)
Return proxy reference to scalar stored at multi-dimensional index given by i, j, and k (mutator).

Caching

As mentioned above, the array classes maintain a software write-back cache of at least one uncompressed block.
When a block in this cache is evicted (e.g. due to a conflict), it is compressed back to permanent storage only if it was
modified while stored in the cache.

The size cache to use is specified by the user, and is an important parameter that needs careful consideration in order
to balance the extra memory usage, performance, and quality (recall that data loss is incurred only when a block is
evicted from the cache and compressed). Although the best choice varies from one application to another, we suggest
allocating at least two “layers” of blocks, e.g. 2 × (nx / 4) × (ny / 4) blocks for 3D arrays, for applications that stream
through the array and perform stencil computations such as gathering data from neighboring elements. This allows
limiting the cache misses to compulsory ones. If the csize parameter provided to the constructor is set to zero bytes,
then this default of two layers is used.

The cache size can be set during construction, or can be set at a later time via array::set_cache_size().
Note that if csize = 0, then the array dimensions must have already been specified for the default size to be computed
correctly. When the cache is resized, it is first flushed if not already empty. The cache can also be flushed explicitly
if desired by calling array::flush_cache(). To empty the cache without compressing any cached data, call
clear_cache(). To query the byte size of the cache, use array::cache_size().

By default a direct-mapped cache is used with a hash function that maps block indices to cache lines. A faster but
more collision prone hash can be enabled by defining the preprocessor macro ZFP_WITH_CACHE_FAST_HASH . A
two-way skew-associative cache is enabled by defining the preprocessor macro ZFP_WITH_CACHE_TWOWAY .

References

template<typename Scalar>
class array1::reference

template<typename Scalar>
class array2::reference

template<typename Scalar>
class array3::reference

Array indexing operators must return lvalue references that alias array elements and serve as vehicles for assigning
values to those elements. Unfortunately, zfp cannot simply return a standard C++ reference (e.g. float&) to an
uncompressed array element since the element in question may exist only in compressed form or as a transient cached
entry that may be invalidated (evicted) at any point.

36 Chapter 10. Compressed Arrays



zfp Documentation, Release 0.5.2

To address this, zfp provides proxies for references and pointers that act much like regular references and pointers,
but which refer to elements by array and index rather than by memory address. When assigning to an array element
through such a proxy reference or pointer, the corresponding element is decompressed to cache (if not already cached)
and immediately updated.

zfp references may be freely passed to other functions and they remain valid during the lifetime of the corresponding
array element. One may also take the address of a reference, which yields a proxy pointer. When a reference appears
as an rvalue in an expression, it is implicitly converted to a value.

The following operators are defined for zfp references. They act on the referenced array element in the same manner
as operators defined for conventional C++ references.

reference reference::operator=(const reference &ref)
Assignment (copy) operator. The referenced element, elem, is assigned the value stored at the element referenced
by ref. Return *this.

reference reference::operator=(Scalar val)

reference reference::operator+=(Scalar val)

reference reference::operator-=(Scalar val)

reference reference::operator*=(Scalar val)

reference reference::operator/=(Scalar val)
Assignment and compound assignment operators. For a given operator op, update the referenced element, elem,
via elem op val. Return *this.

pointer reference::operator&()
Return pointer to the referenced array element.

Finally, zfp proxy references serve as a building block for implementing proxy pointers and iterators.

Pointers

template<typename Scalar>
class array1::pointer

template<typename Scalar>
class array2::pointer

template<typename Scalar>
class array3::pointer

Similar to references, zfp supports proxies for pointers to individual array elements. From the user’s perspective, such
pointers behave much like regular pointers to uncompressed data, e.g. instead of

float a[ny][nx]; // uncompressed 2D array of floats
float* p = &a[0][0]; // point to first array element
p[nx] = 1; // set a[1][0] = 1

*++p = 2; // set a[0][1] = 2

one would write

zfp::array2<float> a(nx, ny, rate); // compressed 2D array of floats
zfp::array2<float>::pointer p = &a(0, 0); // point to first array element
p[nx] = 1; // set a(0, 1) = 1

*++p = 2; // set a(1, 0) = 2

10.4. Pointers 37



zfp Documentation, Release 0.5.2

However, even though zfp‘s proxy pointers point to individual scalars, they are associated with the array that those
scalars are stored in, including the array’s dimensionality. Pointers into arrays of different dimensionality have incom-
patible type. Moreover, pointers to elements in different arrays are incompatible. For example, one cannot take the
difference between pointers into two different arrays.

Unlike zfp‘s proxy references, its proxy pointers support traversing arrays using conventional pointer arithmetic. In
particular, unlike the iterators below, zfp‘s pointers are oblivious to the fact that the compressed arrays are partitioned
into blocks, and the pointers traverse arrays element by element as though the arrays were flattened in standard C
row-major order. That is, if p points to the first element of a 3D array a(nx, ny, nz), then a(i, j, k) ==
p[i + nx * (j + ny * k)]. In other words, pointer indexing follows the same order as flat array indexing
(see array::operator[]()).

A pointer remains valid during the lifetime of the scalar that it points to. Like conventional pointers, proxy pointers can
be passed to other functions and manipulated there, for instance by passing the pointer by reference via pointer&.

The following operators are defined for proxy pointers. Below p refers to the pointer being acted upon.

pointer pointer::operator=(const pointer &q)
Assignment operator. Assigns q to p.

reference pointer::operator*() const
Dereference operator. Return proxy reference to the value pointed to by p.

reference pointer::operator[](ptrdiff_t d) const
Index operator. Return reference to the value stored at p[d].

pointer &pointer::operator++()

pointer &pointer::operator--()
Pre increment (decrement) pointer, e.g. ++p. Return reference to the incremented (decremented) pointer.

pointer pointer::operator++(int)

pointer pointer::operator--(int)
Post increment (decrement) pointer, e.g. p++. Return a copy of the pointer before it was incremented (decre-
mented).

pointer pointer::operator+=(ptrdiff_t d)

pointer pointer::operator-=(ptrdiff_t d)
Increment (decrement) pointer by d. Return a copy of the incremented (decremented) pointer.

pointer pointer::operator+(ptrdiff_t d) const

pointer pointer::operator-(ptrdiff_t d) const
Return a copy of the pointer incremented (decremented) by d.

ptrdiff_t pointer::operator-(const pointer &q) const
Return difference p - q. Defined only for pointers within the same array.

bool pointer::operator==(const pointer &q) const

bool pointer::operator!=(const pointer &q) const
Pointer comparison. Return true (false) if p and q do (do not) point to the same array element.

Iterators

template<typename Scalar>
class array1::iterator

template<typename Scalar>

38 Chapter 10. Compressed Arrays



zfp Documentation, Release 0.5.2

class array2::iterator

template<typename Scalar>
class array3::iterator

Iterators provide a mechanism for sequentially traversing a possibly multi-dimensional array without having to track
array indices or bounds. They are also the preferred mechanism, compared to nested index loops, for initializing
arrays, because they are guaranteed to visit the array one block at a time. This allows all elements of a block to be
initialized together and ensures that the block is not compressed to memory before it has been fully initialized, which
might otherwise result in poor compression and, consequently, larger errors than when the entire block is initialized as
a whole. Note that the iterator traversal order differs in this respect from traversal by pointers.

The order of blocks visited is row-major (as in C), and the elements within a block are also visited in row-major order,
i.e. first by x, then by y, and finally by z. All 4d values in a block are visited before moving on to the next block.

The iterators provided by zfp are sequential forward iterators, except for 1D array iterators, which are random access
iterators. The reason why higher dimensional iterators do not support random access is that this would require very
complicated index computations, especially for arrays with partial blocks. zfp iterators are STL compliant and can be
used in STL algorithms that support forward and random access iterators.

All Iterators

Per STL mandate, the iterators define several types:

type iterator::value_type
The scalar type associated with the array that the iterator points into.

type iterator::difference_type
Difference between two iterators in number of array elements.

type iterator::reference

type iterator::pointer
The reference and pointer type associated with the iterator’s parent array class.

type iterator::iterator_category
Type of iterator: std::random_access_iterator_tag for 1D arrays;
std::forward_iterator_tag for all other arrays.

The following operations are defined on iterators:

iterator iterator::operator=(const iterator &it)
Assignment (copy) operator. Make the iterator point to the same element as it.

reference iterator::operator*() const
Dereference operator. Return reference to the value pointed to by the iterator.

iterator &iterator::operator++()
Pre increment. Return a reference to the incremented iterator.

iterator iterator::operator++(int)
Post increment. Return the value of the iterator before being incremented.

bool iterator::operator==(const iterator &it) const

bool iterator::operator!=(const iterator &it) const
Return true (false) if the two iterators do (do not) point to the same element.

uint iterator::i() const

uint iterator::j() const

10.5. Iterators 39

https://www.sgi.com/tech/stl/


zfp Documentation, Release 0.5.2

uint iterator::k() const
Return array index of element pointed to by the iterator. iterator::i() is defined for all arrays.
iterator::j() is defined only for 2D and 3D arrays. iterator::k() is defined only for 3D arrays.

1D Array Iterators

The following operators are defined only for 1D arrays:

reference iterator::operator[](difference_type d) const
Random access index operator.

iterator &iterator::operator--()
Pre decrement. Return a reference to the decremented iterator.

iterator iterator::operator--(int)
Post decrement. Return the value of the iterator before being decremented.

iterator iterator::operator+=(difference_type d)

iterator iterator::operator-=(difference_type d)
Increment (decrement) iterator d times. Return value of incremented (decremented) iterator.

iterator iterator::operator+(difference_type d) const

iterator iterator::operator-(difference_type d) const
Return a new iterator that has been incremented (decremented) by d.

difference_type iterator::operator-(const iterator &it) const
Return difference between this iterator and it in number of elements. The iterators must refer to elements in the
same array.

bool iterator::operator<=(const iterator &it) const

bool iterator::operator>=(const iterator &it) const

bool iterator::operator<(const iterator &it) const

bool iterator::operator>(const iterator &it) const
Return true if the two iterators satisfy the given relationship. For two iterators, p and q, within the same array, p
< q if and only if q can be reached by incrementing p one or more times.

40 Chapter 10. Compressed Arrays



CHAPTER 11

Tutorial

This tutorial provides examples that illustrate how to use the zfp library and compressed arrays, and includes code
snippets that show the order of declarations and function calls needed to use the compressor.

This tutorial is divided into three parts: the high-level libzfp library; the low-level compression codecs; and the
compressed array classes (in that order). Users interested only in the compressed arrays, which do not directly expose
anything related to compression other than compression rate control, may safely skip the next two sections.

All code examples below are for 3D arrays of doubles, but it should be clear how to modify the function calls for
single precision and for 1D or 2D arrays.

High-Level C Interface

Users concerned only with storing their floating-point data compressed may use zfp as a black box that maps a possibly
non-contiguous floating-point array to a compressed bit stream. The intent of libzfp is to provide both a high- and low-
level interface to the compressor that can be called from both C and C++ (and possibly other languages). libzfp
supports strided access, e.g. for compressing vector fields one scalar at a time, or for compressing arrays of structs.

Consider compressing the 3D C/C++ array

// define an uncompressed array
double a[nz][ny][nx];

where nx, ny, and nz can be any positive dimensions. To invoke the libzfp compressor, the dimensions and type must
first be specified in a zfp_field parameter object that encapsulates the type, size, and memory layout of the array:

// allocate metadata for the 3D array a[nz][ny][nx]
uint dims = 3;
zfp_type type = zfp_type_double;
zfp_field* field = zfp_field_3d(&a[0][0][0], type, nx, ny, nz);

For single-precision data, use zfp_type_float. As of version 0.5.1, the the high-level API also supports integer
arrays (zfp_type_int32 and zfp_type_int64). See FAQs #8 and #9 regarding integer compression.

41



zfp Documentation, Release 0.5.2

Functions similar to zfp_field_3d() exist for declaring 1D and 2D arrays. If the dimensionality of the
array is unknown at this point, then a generic zfp_field_alloc() call can be made to just allocate a
zfp_field struct, which can be filled in later using the set functions. If the array is non-contiguous, then
zfp_field_set_stride_3d() should be called.

The zfp_field parameter object holds information about the uncompressed array. To specify the compressed array,
a zfp_stream object must be allocated:

// allocate metadata for a compressed stream
zfp_stream* zfp = zfp_stream_open(NULL);

We may now specify the rate, precision, or accuracy (see Compression Modes for more details on the meaning of these
parameters):

// set compression mode and parameters
zfp_stream_set_rate(zfp, rate, type, dims, 0);
zfp_stream_set_precision(zfp, precision);
zfp_stream_set_accuracy(zfp, tolerance);

Note that only one of these three functions should be called. The return value from these functions gives the actual
rate, precision, or tolerance, and may differ slightly from the argument passed due to constraints imposed by the
compressor, e.g. each block must be stored using a whole number of bits at least as large as the number of bits in the
floating-point exponent; the precision cannot exceed the number of bits in a floating-point value (i.e. 32 for single and
64 for double precision); and the tolerance must be a (possibly negative) power of two.

The compression parameters have now been specified, but before compression can occur a buffer large enough to
hold the compressed bit stream must be allocated. Another utility function exists for estimating how many bytes are
needed:

// allocate buffer for compressed data
size_t bufsize = zfp_stream_maximum_size(zfp, field);
uchar* buffer = new uchar[bufsize];

Note that zfp_stream_maximum_size() returns the smallest buffer size necessary to safely compress the data–
the actual compressed size may be smaller. If the members of zfp and field are for whatever reason not initialized
correctly, then zfp_stream_maximum_size() returns 0.

Before compression can commence, we must associate the allocated buffer with a bit stream used by the compressor
to read and write bits:

// associate bit stream with allocated buffer
bitstream* stream = stream_open(buffer, bufsize);
zfp_stream_set_bit_stream(zfp, stream);

Finally, the array is compressed as follows:

// compress entire array
size_t size = zfp_compress(zfp, field);

The return value is the actual number of bytes of compressed storage, and as already mentioned, size ≤ bufsize. If size
= 0, then the compressor failed. Since zfp 0.5.0, the compressor does not rewind the bit stream before compressing,
which allows multiple fields to be compressed one after the other. The return value from zfp_compress() is
always the total number of bytes of compressed storage so far relative to the memory location pointed to by buffer.

To decompress the data, the field and compression parameters must be initialized with the same values as used
for compression, either via the same sequence of function calls as above, or by recording these fields and set-
ting them directly. Metadata such as array dimensions and compression parameters are by default not stored in
the compressed stream. It is up to the caller to store this information, either separate from the compressed data,

42 Chapter 11. Tutorial



zfp Documentation, Release 0.5.2

or via the zfp_write_header() and zfp_read_header() calls, which must precede the corresponding
zfp_compress() and zfp_decompress() calls, respectively. These calls allow the user to specify what infor-
mation to store in the header, including a ‘magic’ format identifier, the field type and dimensions, and the compression
parameters (see the ZFP_HEADER macros).

In addition to this initialization, the bit stream has to be rewound to the beginning (before reading the header and
decompressing the data):

// rewind compressed stream and decompress array
zfp_stream_rewind(zfp);
int success = zfp_decompress(zfp, field);

The return value is zero if the decompressor failed.

Simple Example

Tying it all together, the code example below (see also the simple program) shows how to compress a 3D array double
array[nz][ny][nx]:

// input: (void* array, int nx, int ny, int nz, double tolerance)

// initialize metadata for the 3D array a[nz][ny][nx]
zfp_type type = zfp_type_double; // array scalar type
zfp_field* field = zfp_field_3d(array, type, nx, ny, nz); // array metadata

// initialize metadata for a compressed stream
zfp_stream* zfp = zfp_stream_open(NULL); // compressed stream and
→˓parameters
zfp_stream_set_accuracy(zfp, tolerance); // set tolerance for fixed-
→˓accuracy mode
// zfp_stream_set_precision(zfp, precision); // alternative: fixed-
→˓precision mode
// zfp_stream_set_rate(zfp, rate, type, 3, 0); // alternative: fixed-rate
→˓mode

// allocate buffer for compressed data
size_t bufsize = zfp_stream_maximum_size(zfp, field); // capacity of compressed
→˓buffer (conservative)
void* buffer = malloc(bufsize); // storage for compressed
→˓stream

// associate bit stream with allocated buffer
bitstream* stream = stream_open(buffer, bufsize); // bit stream to compress to
zfp_stream_set_bit_stream(zfp, stream); // associate with
→˓compressed stream
zfp_stream_rewind(zfp); // rewind stream to
→˓beginning

// compress array
size_t zfpsize = zfp_compress(zfp, field); // return value is byte
→˓size of compressed stream

11.1. High-Level C Interface 43



zfp Documentation, Release 0.5.2

Low-Level C Interface

For applications that wish to compress or decompress portions of an array on demand, a low-level interface is available.
Since this API is useful primarily for supporting random access, the user also needs to manipulate the bit stream, e.g.
to position the bit pointer to where data is to be read or written. Please be advised that the bit stream functions have
been optimized for speed, and do not check for buffer overruns or other types of programmer error.

Like the high-level API, the low-level API also makes use of the zfp_stream parameter object (see section above)
to specify compression parameters and storage, but does not encapsulate array metadata in a zfp_field object.
Functions exist for encoding and decoding complete or partial blocks, with or without strided access. In non-strided
mode, the uncompressed block to be encoded or decoded is assumed to be stored contiguously. For example,

// compress a single contiguous block
double block[4 * 4 * 4] = { /* some set of values */ };
uint bits = zfp_encode_block_double_3(zfp, block);

The return value is the number of bits of compressed storage for the block. For fixed-rate streams, if random access is
desired, then the stream should also be flushed after each block is encoded:

// flush any buffered bits
zfp_stream_flush(zfp);

This flushing should be done only after the last block has been compressed in fixed-precision and fixed-accuracy mode,
or when random access is not needed in fixed-rate mode.

The block above could also have been compressed as follows using strides:

// compress a single contiguous block using strides
double block[4][4][4] = { /* some set of values */ };
int sx = &block[0][0][1] - &block[0][0][0]; // x stride = 1
int sy = &block[0][1][0] - &block[0][0][0]; // y stride = 4
int sz = &block[1][0][0] - &block[0][0][0]; // z stride = 16
uint bits = zfp_encode_block_strided_double_3(zfp, block, sx, sy, sz);

The strides are measured in number of scalars, not in bytes.

For partial blocks, e.g. near the boundaries of arrays whose dimensions are not multiples of four, there are correspond-
ing functions that accept parameters nx, ny, and nz to specify the actual block dimensions, with 1 ≤ nx, ny, nz ≤ 4.
Corresponding functions exist for decompression. Such partial blocks typically do not compress as well as full blocks
and should be avoided if possible.

To position a bit stream for reading (decompression), use

// position the stream at given bit offset for reading
stream_rseek(stream, offset);

where the offset is measured in number of bits from the beginning of the stream. For writing (compression), a corre-
sponding call exists:

// position the stream at given bit offset for writing
stream_wseek(stream, offset);

Note that it is possible to decompress fewer bits than are stored with a compressed block to quickly obtain an approxi-
mation. This is done by setting zfp->maxbits to fewer bits than used during compression, e.g. to decompress only
the first 256 bits of each block:

// modify decompression parameters to decode 256 bits per block
uint maxbits;

44 Chapter 11. Tutorial



zfp Documentation, Release 0.5.2

uint maxprec;
int minexp;
zfp_stream_params(zfp, NULL, &maxbits, &maxprec, &minexp);
assert(maxbits >= 256);
zfp_stream_set_params(zfp, 256, 256, maxprec, minexp);

This feature may be combined with progressive decompression, as discussed further in FAQ #13.

Compressed C++ Arrays

The zfp API has been designed to facilitate integration with existing applications. After initial array declaration, a
zfp array can often be used in place of a regular C/C++ array or STL vector, e.g. using flat indexing via a[index]
or using multidimensional indexing via a(i), a(i, j), or a(i, j, k). There are, however, some important
differences. For instance, applications that rely on addresses or references to array elements may have to be modified
to use special proxy classes that implement pointers and references; see Limitations.

zfp does not support special floating-point values like infinities and NaNs, although denormalized numbers are handled
correctly. Similarly, because the compressor assumes that the array values vary smoothly, using finite but large values
like HUGE_VAL in place of infinities is not advised, as this will introduce large errors in smaller values within the
same block. Future extensions will provide support for a bit mask to mark the presence of non-values.

The zfp C++ classes are implemented entirely as header files and make extensive use of C++ templates to reduce code
redundancy. Most classes are wrapped in the zfp namespace.

Currently there are six array classes for 1D, 2D, and 3D arrays, each of which can represent single- or double-precision
values. Although these arrays store values in a form different from conventional single- and double-precision floating
point, the user interacts with the arrays via floats and doubles.

The description below is for 3D arrays of doubles–the necessary changes for other array types should be obvious. To
declare and zero initialize an array, use

// declare nx * ny * nz array of compressed doubles
zfp::array3<double> a(nx, ny, nz, rate);

This declaration is conceptually equivalent to

double a[nz][ny][nx] = {};

or using STL vectors

std::vector<double> a(nx * ny * nz, 0.0);

but with the user specifying the amount of storage used via the rate parameter. (A predefined type array3d also
exists, while the suffix ‘f’ is used for floats.) Note that the array dimensions can be arbitrary, and need not be multiples
of four (see above for a discussion of incomplete blocks). The rate argument specifies how many bits per value
(amortized) to store in the compressed representation. By default the block size is restricted to a multiple of 64 bits,
and therefore the rate argument can be specified in increments of 64 / 4d bits in d dimensions, i.e.

1D arrays: 16-bit granularity
2D arrays: 4-bit granularity
3D arrays: 1-bit granularity

For finer granularity, the BIT_STREAM_WORD_TYPE macro needs to be set to a type narrower than 64 bits during
compilation of libzfp, e.g. if set to uint8 the rate granularity becomes 8 / 4d bits in d dimensions, or

11.3. Compressed C++ Arrays 45



zfp Documentation, Release 0.5.2

1D arrays: 2-bit granularity
2D arrays: 1/2-bit granularity
3D arrays: 1/8-bit granularity

Note that finer granularity usually implies slightly lower performance. Also note that because the arrays are stored
compressed, their effective precision is likely to be higher than the user-specified rate.

The array can also optionally be initialized from an existing contiguous floating-point array stored at pointer with an
x stride of 1, y stride of nx, and z stride of nx × ny:

// declare and initialize 3D array of doubles
zfp::array3d a(nx, ny, nz, precision, pointer, cache_size);

The optional cache_size argument specifies the minimum number of bytes to allocate for the cache of uncompressed
blocks (see Caching below for more details).

If not already initialized, a function array::set() can be used to copy uncompressed data to the compressed array:

const double* pointer; // pointer to uncompressed, initialized data
a.set(pointer); // initialize compressed array with floating-point data

Similarly, an array::get() function exists for retrieving uncompressed data:

double* pointer; // pointer to where to write uncompressed data
a.get(pointer); // decompress and store the array at pointer

The compressed representation of an array can also be queried or initialized directly without having to convert to/from
its floating-point representation:

size_t bytes = compressed_size(); // number of bytes of compressed storage
uchar* compressed_data(); // pointer to compressed data

The array can through this pointer be initialized from offline compressed storage, but only after its dimensions
and rate have been specified (see above). For this to work properly, the cache must first be emptied via a
array::clear_cache() call (see below).

Through operator overloading, the array can be accessed in one of two ways. For read accesses, use

double value = a[index]; // fetch value with given flat array index
double value = a(i, j, k); // fetch value with 3D index (i, j, k)

These access the same value if and only if index = i + nx * (j + ny * k). Note that 0 ≤ i < nx, 0 ≤ j <
ny, and 0 ≤ k < nz, and i varies faster than j, which varies faster than k.

Array values may be written and updated using the usual set of C++ assignment and compound assignment operators.
For example:

a[index] = value; // set value at flat array index
a(i, j, k) += value; // increment value with 3D index (i, j, k)

Whereas one might expect these operators to return a (non-const) reference to an array element, this would allow
seating a reference to a value that currently is cached but is transient, which could be unsafe. Moreover, this would
preclude detecting when an array element is modified. Therefore, the return type of both operators [] and () is
a proxy reference class, similar to std::vector<bool>::reference from the STL library. Because read
accesses to a mutable object cannot call the const-qualified accessor, a proxy reference may be returned even for read
calls, e.g. in

46 Chapter 11. Tutorial



zfp Documentation, Release 0.5.2

a[i - 1] = a[i];

the array a clearly must be mutable to allow assignment to a[i - 1], and therefore the read access a[i] returns
type array::reference. The value associated with the read access is obtained via an implicit conversion.

Array dimensions nx, ny, and nz can be queried using these functions:

size_t size(); // total number of elements nx * ny * nz
uint size_x(); // nx
uint size_y(); // ny
uint size_z(); // nz

The array dimensions can also be changed dynamically, e.g. if not known at time of construction, using

void resize(uint nx, uint ny, uint nz, bool clear = true);

When clear = true, the array is explicitly zeroed. In either case, all previous contents of the array are lost. If nx = ny =
nz = 0, all storage is freed.

Finally, the rate supported by the array may be queried via

double rate(); // number of compressed bits per value

and changed using

void set_rate(rate); // change rate

This also destroys prior contents.

As of zfp 0.5.2, iterators and proxy objects for pointers and references are supported. Note that the decompressed
value of an array element exists only intermittently, when the decompressed value is cached. It would not be safe to
return a double& reference or double* pointer to the cached but transient value since it may be evicted from the
cache at any point, thus invalidating the reference or pointer. Instead, zfp provides proxy objects for references and
pointers that guarantee persistent access by referencing elements by array object and index. These classes perform
decompression on demand, much like how Boolean vector references are implemented in the STL.

Iterators for 1D arrays support random access, while 2D and 3D array iterators are merely forward (sequential) iter-
ators. All iterators ensure that array values are visited one block at a time, and are the preferred way of looping over
array elements. Such block-by-block access is especially useful when performing write accesses since then complete
blocks are updated one at a time, thus reducing the likelihood of a partially updated block being evicted from the cache
and compressed, perhaps with some values in the block being uninitialized. Here is an example of initializing a 3D
array:

for (zfp::array3d::iterator it = a.begin(); it != a.end(); it++) {
int i = it.i();
int j = it.j();
int k = it.k();
a(i, j, k) = some_function(i, j, k);

}

Pointers to array elements are available via a special pointer class. Such pointers may be a useful way of passing
(flattened) zfp arrays to functions that expect uncompressed arrays, e.g. by using the pointer type as template argument.
For example:

template <typename double_ptr>
void sum(double_ptr p, int count)
{

double s = 0;

11.3. Compressed C++ Arrays 47



zfp Documentation, Release 0.5.2

for (int i = 0; i < count; i++)
s += p[i];

return s;
}

Then the following are equivalent:

// sum of STL vector elements (double_ptr == double*)
std::vector<double> vec(nx * ny * nz, 0.0);
double vecsum = sum(&vec[0], nx * ny * nz);

// sum of zfp array elements (double_ptr == zfp::array3d::pointer)
zfp::array3<double> array(nx, ny, nz, rate);
double zfpsum = sum(&array[0], nx * ny * nz);

As another example,

for (zfp::array1d::pointer p = &a[0]; p - &a[0] < a.size(); p++)

*p = 0.0;

initializes a 1D array to all-zeros. Pointers visit arrays in standard row-major order, i.e.

&a(i, j, k) == &a[0] + i + nx * (j + ny * k)
== &a[i + nx * (j + ny * k)]

where &a(i, j, k) and &a[0] are both of type array3d::pointer. Thus, iterators and pointers do not visit
arrays in the same order, except for the special case of 1D arrays. Unlike iterators, pointers support random access for
arrays of all dimensions and behave very much like float* and double* built-in pointers.

Proxy objects for array element references have been supported since the first release of zfp, and may for instance be
used in place of double&. Iterators and pointers are implemented in terms of references.

The following table shows the equivalent zfp type to standard types when working with 1D arrays:

double& zfp::array1d::reference
double* zfp::array1d::pointer
std::vector<double>::iterator zfp::array1d::iterator

Caching

As mentioned above, the array class maintains a software write-back cache of at least one uncompressed block. When
a block in this cache is evicted (e.g. due to a conflict), it is compressed back to permanent storage only if it was
modified while stored in the cache.

The size cache to use is specified by the user, and is an important parameter that needs careful consideration in order
to balance the extra memory usage, performance, and quality (recall that data loss is incurred only when a block is
evicted from the cache and compressed). Although the best choice varies from one application to another, we suggest
allocating at least two layers of blocks (2 × (nx / 4) × (ny / 4) blocks) for applications that stream through the array
and perform stencil computations such as gathering data from neighboring elements. This allows limiting the cache
misses to compulsory ones. If the cache_size parameter is set to zero bytes, then this default of two layers is used.

The cache size can be set during construction, or can be set at a later time via

void set_cache_size(bytes); // change cache size

48 Chapter 11. Tutorial



zfp Documentation, Release 0.5.2

Note that if bytes = 0, then the array dimensions must have already been specified for the default size to be computed
correctly. When the cache is resized, it is first flushed if not already empty. The cache can also be flushed explicitly if
desired by calling

void flush_cache(); // empty cache by first compressing any modified blocks

To empty the cache without compressing any cached data, call

void clear_cache(); // empty cache without compression

To query the byte size of the cache, use

size_t cache_size(); // actual cache size in bytes

11.3. Compressed C++ Arrays 49



zfp Documentation, Release 0.5.2

50 Chapter 11. Tutorial



CHAPTER 12

File Compressor

The zfp executable in the bin directory is primarily intended for evaluating the rate-distortion (compression ratio
and quality) provided by the compressor, but since version 0.5.0 also allows reading and writing compressed data sets.
zfp takes as input a raw, binary array of floats, doubles, or integers in native byte order and optionally outputs a
compressed or reconstructed array obtained after lossy compression followed by decompression. Various statistics on
compression ratio and error are also displayed.

The uncompressed input and output files should be a flattened, contiguous sequence of scalars without any header
information, generated for instance by

double* data = new double[nx * ny * nz];
// populate data
FILE* file = fopen("data.bin", "wb");
fwrite(data, sizeof(*data), nx * ny * nz, file);
fclose(file);

zfp requires a set of command-line options, the most important being the -i option that specifies that the input is
uncompressed. When present, -i tells zfp to read an uncompressed input file and compress it to memory. If desired,
the compressed stream can be written to an output file using -z. When -i is absent, on the other hand, -z names
the compressed input (not output) file, which is then decompressed. In either case, -o can be used to output the
reconstructed array resulting from lossy compression and decompression.

So, to compress a file, use -i file.in -z file.zfp. To later decompress the file, use -z file.zfp -o
file.out. A single dash “-” can be used in place of a file name to denote standard input or output.

When reading uncompressed input, the floating-point precision (single or double) must be specified using either -f
(float) or -d (double). In addition, the array dimensions must be specified using -1 (for 1D arrays), -2 (for 2D
arrays), or -3 (for 3D arrays). For multidimensional arrays, x varies faster than y, which in turn varies faster than z.
That is, a 3D input file corresponding to a flattened C array a[nz][ny][nx] is specified as -3 nx ny nz.

Note that -2 nx ny is not equivalent to -3 nx ny 1, even though the same number of values are compressed.
One invokes the 2D codec, while the other uses the 3D codec, which in this example has to pad the input to an nx
× ny × 4 array since arrays are partitioned into blocks of dimensions 4d. Such padding usually negatively impacts
compression.

Moreover, -2 nx ny is not equivalent to -2 ny nx, i.e., with the dimensions transposed. It is crucial for accuracy

51



zfp Documentation, Release 0.5.2

and compression ratio that the array dimensions are listed in the order expected by zfp so that the array layout is
correctly interpreted. See this discussion for more details.

Using -h, the array dimensions and type are stored in a header of the compressed stream so that they do not have to
be specified on the command line during decompression. The header also stores compression parameters, which are
described below. The compressor and decompressor must agree on whether headers are used, and it is up to the user
to enforce this.

zfp accepts several options for specifying how the data is to be compressed. The most general of these, the -c option,
takes four constraint parameters that together can be used to achieve various effects. These constraints are:

minbits: the minimum number of bits used to represent a block
maxbits: the maximum number of bits used to represent a block
maxprec: the maximum number of bit planes encoded
minexp: the smallest bit plane number encoded

These parameters are discussed in detail in the section on compression modes. Options -r, -p, and -a provide a
simpler interface to setting all of the above parameters by invoking fixed-rate (-r), -precision (-p), and -accuracy
(-a).

Usage

Below is a description of each command-line option accepted by zfp.

General options

-h
Read/write array and compression parameters from/to compressed header.

-q
Quiet mode; suppress diagnostic output.

-s
Evaluate and print the following error statistics:

•rmse: The root mean square error.

•nrmse: The root mean square error normalized to the range.

•maxe: The maximum absolute pointwise error.

•psnr: The peak signal to noise ratio in decibels.

Input and output

-i <path>
Name of uncompressed binary input file. Use “-” for standard input.

-o <path>
Name of decompressed binary output file. Use “-” for standard output. May be used with either -i, -z, or both.

-z <path>
Name of compressed input (without -i) or output file (with -i). Use “-” for standard input or output.

When -i is specified, data is read from the corresponding uncompressed file, compressed, and written to the com-
pressed file specified by -z (when present). Without -i, compressed data is read from the file specified by -z and
decompressed. In either case, the reconstructed data can be written to the file specified by -o.

52 Chapter 12. File Compressor



zfp Documentation, Release 0.5.2

Array type and dimensions

-f
Single precision (float type). Shorthand for -t f32.

-d
Double precision (double type). Shorthand for -t f64.

-t <type>
Specify scalar type as one of i32, i64, f32, f64 for 32- or 64-bit integer or floating scalar type.

-1 <nx>
Dimensions of 1D C array a[nx].

-2 <nx> <ny>
Dimensions of 2D C array a[ny][nx].

-3 <nx> <ny> <nz>
Dimensions of 3D C array a[nz][ny][nx].

When -i is used, the scalar type and array dimensions must be specified. One of -f, -d, or -t specifies the input
scalar type. -1, -2, or -3 specifies the array dimensions. The same parameters must be given when decompressing
data (without -i), unless a header was stored using -h during compression.

Compression parameters

-r <rate>
Specify fixed rate in terms of number of compressed bits per floating-point value.

-p <precision>
Specify fixed precision in terms of number of uncompressed bits per value.

-a <tolerance>
Specify fixed accuracy in terms of absolute error tolerance.

-c <minbits> <maxbits> <maxprec> <minexp>
Specify expert mode parameters.

When -i is used, the compression parameters must be specified. The same parameters must be given when decom-
pressing data (without -i), unless a header was stored using -h when compressing. See the section on compression
modes for a discussion of these parameters.

Examples

• -i file : read uncompressed file and compress to memory

• -z file : read compressed file and decompress to memory

• -i ifile -z zfile : read uncompressed ifile, write compressed zfile

• -z zfile -o ofile : read compressed zfile, write decompressed ofile

• -i ifile -o ofile : read ifile, compress, decompress, write ofile

• -i file -s : read uncompressed file, compress to memory, print stats

• -i - -o - -s : read stdin, compress, decompress, write stdout, print stats

• -f -3 100 100 100 -r 16 : 2x fixed-rate compression of 100 × 100 × 100 floats

• -d -1 1000000 -r 32 : 2x fixed-rate compression of 1,000,000 doubles

12.1. Usage 53



zfp Documentation, Release 0.5.2

• -d -2 1000 1000 -p 32 : 32-bit precision compression of 1000 × 1000 doubles

• -d -1 1000000 -a 1e-9 : compression of 1,000,000 doubles with < 10-9 max error

• -d -1 1000000 -c 64 64 0 -1074 : 4x fixed-rate compression of 1,000,000 doubles

54 Chapter 12. File Compressor



CHAPTER 13

Code Examples

The examples directory includes five programs that make use of the compressor.

Simple Compressor

The simple program is a minimal example that shows how to call the compressor and decompressor on a double-
precision 3D array. Without the -d option, it will compress the array and write the compressed stream to standard
output. With the -d option, it will instead read the compressed stream from standard input and decompress the array:

simple > compressed.zfp
simple -d < compressed.zfp

For a more elaborate use of the compressor, see the zfp utility.

Diffusion Solver

The diffusion example is a simple forward Euler solver for the heat equation on a 2D regular grid, and is in-
tended to show how to declare and work with zfp‘s compressed arrays, as well as give an idea of how changing the
compression rate and cache size affects the error in the solution and solution time. The usage is:

diffusion [-i] [-n nx ny] [-t nt] [-r rate] [-c blocks]

where rate specifies the exact number of compressed bits to store per double-precision floating-point value (default =
64); nx and ny specify the grid size (default = 100 × 100); nt specifies the number of time steps to take (the default is
to run until time t = 1); and blocks is the number of uncompressed blocks to cache (default = nx / 2). The -i option
enables array traversal via iterators instead of indices.

Running diffusion with the following arguments:

55



zfp Documentation, Release 0.5.2

diffusion -r 8
diffusion -r 12
diffusion -r 20
diffusion -r 64

should result in this output:

rate=8 sum=0.996442 error=4.813938e-07
rate=12 sum=0.998338 error=1.967777e-07
rate=20 sum=0.998326 error=1.967952e-07
rate=64 sum=0.998326 error=1.967957e-07

For speed and quality comparison, the solver solves the same problem using uncompressed double-precision arrays
when -r is omitted.

Speed Benchmark

The speed program takes two optional parameters:

speed [rate] [blocks]

It measures the throughput of compression and decompression of 3D double-precision data (in megabytes of uncom-
pressed data per second). By default, a rate of 1 bit/value and two million blocks are processed.

PGM Image Compression

The pgm program illustrates how zfp can be used to compress grayscale images in the pgm format. The usage is:

pgm <param> <input.pgm >output.pgm

If param is positive, it is interpreted as the rate in bits per pixel, which ensures that each block of 4 × 4 pixels is
compressed to a fixed number of bits, as in texture compression codecs. If param is negative, then fixed-precision
mode is used with precision -param, which tends to give higher quality for the same rate. This use of zfp is not
intended to compete with existing texture and image compression formats, but exists merely to demonstrate how to
compress 8-bit integer data with zfp. See FAQs #20 and #21 for information on the effects of setting the precision.

In-place Compression

The inplace example shows how one might use zfp to perform in-place compression and decompression when
memory is at a premium. Here the floating-point array is overwritten with compressed data, which is later decom-
pressed back in place. This example also shows how to make use of some of the low-level features of zfp, such as its
low-level, block-based compression API and bit stream functions that perform seeks on the bit stream. The program
takes one optional argument:

inplace [tolerance]

which specifies the fixed-accuracy absolute tolerance to use during compression. Please see FAQ #19 for more on the
limitations of in-place compression.

56 Chapter 13. Code Examples

http://netpbm.sourceforge.net/doc/pgm.html


zfp Documentation, Release 0.5.2

Iterators

The iterator example illustrates how to use zfp‘s compressed-array iterators and pointers for traversing arrays.
For instance, it gives an example of sorting a 1D compressed array using std::sort(). This example takes no
command-line options.

13.6. Iterators 57



zfp Documentation, Release 0.5.2

58 Chapter 13. Code Examples



CHAPTER 14

Regression Tests

The testzfp program in the tests directory performs regression testing that exercises most of the functionality of
libzfp and the array classes. The tests assume the default compiler settings, i.e. with none of the macros in Config
defined. By default, small, pregenerated floating-point arrays are used in the test, since they tend to have the same
binary representation across platforms, whereas it can be difficult to computationally generate bit-for-bit identical
arrays. To test larger arrays, use the medium or large options. When large arrays are used, the (de)compression
throughput is also measured and reported in number of uncompressed bytes per second.

59



zfp Documentation, Release 0.5.2

60 Chapter 14. Regression Tests



CHAPTER 15

FAQ

The following is a list of answers to frequently asked questions. For questions not answered here or elsewhere in the
documentation, please e-mail Peter Lindstrom.

Questions answered in this FAQ:

1. Can zfp compress vector fields?

2. Should I declare a 2D array as zfp::array1d a(nx * ny, rate)?

3. How can I initialize a zfp compressed array from disk?

4. Can I use zfp to represent dense linear algebra matrices?

5. Can zfp compress logically regular but geometrically irregular data?

6. Does zfp handle infinities, NaNs,and subnormal floating-point numbers?

7. Can zfp handle data with some missing values?

8. Can I use zfp to store integer data?

9. Can I compress 32-bit integers using zfp?

10. Why does zfp corrupt memory if my allocated buffer is too small?

11. Are zfp compressed streams portable across platforms?

12. How can I achieve finer rate granularity?

13. Can I generate progressive zfp streams?

14. How do I initialize the decompressor?

15. Must I use the same parameters during compression and decompression?

16. Do strides have to match during compression and decompression?

17. Why does zfp sometimes not respect my error tolerance?

18. Why is the actual rate sometimes not what I requested?

19. Can zfp perform compression in place?

61

mailto:pl@llnl.gov


zfp Documentation, Release 0.5.2

20. How should I set the precision to bound the relative error?

21. Does zfp support lossless compression?

22. Why is my actual, measured error so much smaller than the tolerance?

Q1: Can zfp compress vector fields?

I have a 2D vector field

double velocity[ny][nx][2];

of dimensions nx × ny. Can I use a 3D zfp array to store this as:

array3d velocity(2, nx, ny, rate);

A: Although this could be done, zfp assumes that consecutive values are related. The two velocity components (vx, vy)
are almost suredly independent and would not be correlated. This will severely hurt the compression rate or quality.
Instead, consider storing vx and vy as two separate 2D scalar arrays:

array2d vx(nx, ny, rate);
array2d vy(nx, ny, rate);

or as

array2d velocity[2] = {array2d(nx, ny, rate), array2d(nx, ny, rate)};

Q2: Should I declare a 2D array as zfp::array1d a(nx * ny, rate)?

I have a 2D scalar field of dimensions nx × ny that I allocate as

double* a = new double[nx * ny];

and index as

a[x + nx * y]

Should I use a corresponding zfp array

array1d a(nx * ny, rate);

to store my data in compressed form?

A: Although this is certainly possible, if the scalar field exhibits coherence in both spatial dimensions, then far better
results can be achieved by using a 2D array:

array2d a(nx, ny, rate);

Although both compressed arrays can be indexed as above, the 2D array can exploit smoothness in both dimensions
and improve the quality dramatically for the same rate.

Since zfp 0.5.2, proxy pointers are also available that act much like the flat double*.

Q3: How can I initialize a zfp compressed array from disk?

I have a large, uncompressed, 3D data set:

62 Chapter 15. FAQ



zfp Documentation, Release 0.5.2

double a[nz][ny][nx];

stored on disk that I would like to read into a compressed array. This data set will not fit in memory uncompressed.
What is the best way of doing this?

A: Using a zfp array:

array3d a(nx, ny, nz, rate);

the most straightforward (but perhaps not best) way is to read one floating-point value at a time and copy it into the
array:

for (uint z = 0; z < nz; z++)
for (uint y = 0; y < ny; y++)
for (uint x = 0; x < nx; x++) {
double f;
if (fread(&f, sizeof(f), 1, file) == 1)

a(x, y, z) = f;
else {
// handle I/O error

}
}

Note, however, that if the array cache is not large enough, then this may compress blocks before they have been
completely filled. Therefore it is recommended that the cache holds at least one complete layer of blocks, i.e. (nx / 4)
× (ny / 4) blocks in the example above.

To avoid inadvertent evictions of partially initialized blocks, it is better to buffer four layers of nx × ny values each at
a time, when practical, and to completely initialize one block after another, which is facilitated using zfp‘s iterators:

double* buffer = new double[nx * ny * 4];
int zmin = -4;
for (zfp::array3d::iterator it = a.begin(); it != a.end(); it++) {
int x = it.i();
int y = it.j();
int z = it.k();
if (z > zmin + 3) {
// read another layer of blocks
if (fread(buffer, sizeof(*buffer), nx * ny * 4, file) != nx * ny * 4) {

// handle I/O error
}
zmin += 4;

}
a(x, y, z) = buffer[x + nx * (y + ny * (z - zmin))];

}

Iterators have been available since zfp 0.5.2.

Q4: Can I use zfp to represent dense linear algebra matrices?

A: Yes, but your mileage may vary. Dense matrices, unlike smooth scalar fields, rarely exhibit correlation between
adjacent rows and columns. Thus, the quality or compression ratio may suffer.

Q5: Can zfp compress logically regular but geometrically irregular data?

63



zfp Documentation, Release 0.5.2

My data is logically structured but irregularly sampled, e.g. it is rectilinear, curvilinear, or Lagrangian, or uses an
irregular spacing of quadrature points. Can I still use zfp to compress it?

A: Yes, as long as the data is (or can be) represented as a logical multidimensional array, though your mileage may
vary. zfp has been designed for uniformly sampled data, and compression will in general suffer the more irregular the
sampling is.

Q6: Does zfp handle infinities, NaNs,and subnormal floating-point numbers?

A: Only finite, valid floating-point values are currently supported. If a block contains a NaN or an infinity, undefined
behavior is invoked due to the C math function frexp() being undefined for non-numbers. Subnormal numbers are,
however, handled correctly.

Q7: Can zfp handle data with some missing values?

My data has some missing values that are flagged by very large numbers, e.g. 1e30. Is that OK?

A: Although all finite numbers are “correctly” handled, such large sentinel values are likely to pollute nearby values,
because all values within a block are expressed with respect to a common largest exponent. The presence of very
large values may result in complete loss of precision of nearby, valid numbers. Currently no solution to this problem
is available, but future versions of zfp will likely support a bit mask to tag values that should be excluded from
compression.

Q8: Can I use zfp to store integer data?

Can I use zfp to store integer data such as 8-bit quantized images or 16-bit digital elevation models?

A: Yes (as of version 0.4.0), but the data has to be promoted to 32-bit signed integers first. This should be done one
block at a time using an appropriate zfp_promote_*_to_int32() function call (see zfp.h). Future versions
of zfp may provide a high-level interface that automatically performs promotion and demotion.

Note that the promotion functions shift the low-precision integers into the most significant bits of 31-bit (not 32-bit)
integers and also convert unsigned to signed integers. Do use these functions rather than simply casting 8-bit integers to
32 bits to avoid wasting compressed bits to encode leading zeros. Moreover, in fixed-precision mode, set the precision
relative to the precision of the (unpromoted) source data.

As of version 0.5.1, integer data is supported both by the low-level API and high-level calls zfp_compress() and
zfp_decompress().

Q9: Can I compress 32-bit integers using zfp?

I have some 32-bit integer data. Can I compress it using zfp‘s 32-bit integer support?

A: Maybe. zfp compression of 32-bit and 64-bit integers requires that each integer f have magnitude |f | < 230 and |f |
< 262, respectively. To handle signed integers that span the entire range −231 ≤ x < 231, or unsigned integers 0 ≤ x <
232, the data has to be promoted to 64 bits first.

As with floating-point data, the integers should ideally represent a quantized continuous function rather than, say,
categorical data or set of indices. Depending on compression settings and data range, the integers may or may not be
losslessly compressed. If fixed-precision mode is used, the integers may be stored at less precision than requested. See
Q21 for more details on precision and lossless compression.

Q10: Why does zfp corrupt memory if my allocated buffer is too small?

64 Chapter 15. FAQ



zfp Documentation, Release 0.5.2

Why does zfp corrupt memory rather than return an error code if not enough memory is allocated for the compressed
data?

A: This is for performance reasons. zfp was primarily designed for fast random access to fixed-rate compressed arrays,
where checking for buffer overruns is unnecessary. Adding a test for every compressed byte output would significantly
compromise performance.

One way around this problem (when not in fixed-rate mode) is to use the maxbits parameter in conjunction with
the maximum precision or maximum absolute error parameters to limit the size of compressed blocks. Finally, the
function zfp_stream_maximum_size() returns a conservative buffer size that is guaranteed to be large enough
to hold the compressed data and the optional header.

Q11: Are zfp compressed streams portable across platforms?

Are zfp compressed streams portable across platforms? Are there, for example, endianness issues?

A: Yes, zfp can write portable compressed streams. To ensure portability across different endian platforms, the bit
stream must however be written in increments of single bytes on big endian processors (e.g. PowerPC, SPARC),
which is achieved by compiling zfp with an 8-bit (single-byte) word size:

-DBIT_STREAM_WORD_TYPE=uint8

See BIT_STREAM_WORD_TYPE. Note that on little endian processors (e.g. Intel x86-64 and AMD64), the word size
does not affect the bit stream produced, and thus the default word size may be used. By default, zfp uses a word size
of 64 bits, which results in the coarsest rate granularity but fastest (de)compression. If cross-platform portability is not
needed, then the maximum word size is recommended (but see also Q12).

When using 8-bit words, zfp produces a compressed stream that is byte order independent, i.e. the exact same
compressed sequence of bytes is generated on little and big endian platforms. When decompressing such streams,
floating-point and integer values are recovered in the native byte order of the machine performing decompression. The
decompressed values can be used immediately without the need for byte swapping and without having to worry about
the byte order of the computer that generated the compressed stream.

Finally, zfp assumes that the floating-point format conforms to IEEE 754. Issues may arise on architectures that do
not support IEEE floating point.

Q12: How can I achieve finer rate granularity?

A: For d-dimensional arrays, zfp supports a granularity of 8 / 4d bits, i.e. the rate can be specified in increments of
a fraction of a bit for 2D and 3D arrays. Such fine rate selection is always available for sequential compression (e.g.
when calling zfp_compress()).

Unlike in sequential compression, zfp‘s compressed arrays require random access writes, which are supported only at
the granularity of whole words. By default, a word is 64 bits, which gives a rate granularity of 64 / 4d in d dimensions,
i.e. 16 bits in 1D, 4 bits in 2D, and 1 bit in 3D.

To achieve finer granularity, recompile zfp with a smaller (but as large as possible) stream word size, e.g.:

-DBIT_STREAM_WORD_TYPE=uint8

gives the finest possible granularity, but at the expense of (de)compression speed. See BIT_STREAM_WORD_TYPE.

Q13: Can I generate progressive zfp streams?

A: Yes, but it requires some coding effort. There is currently no high-level support for progressive zfp streams. To
implement progressive fixed-rate streams, the fixed-length bit streams should be interleaved among the blocks that

65



zfp Documentation, Release 0.5.2

make up an array. For instance, if a 3D array uses 1024 bits per block, then those 1024 bits could be broken down into,
say, 16 pieces of 64 bits each, resulting in 16 discrete quality settings. By storing the blocks interleaved such that the
first 64 bits of all blocks are contiguous, followed by the next 64 bits of all blocks, etc., one can achieve progressive
decompression by setting the zfp_stream.maxbits parameter (see zfp_stream_set_params()) to the
number of bits per block received so far.

To enable interleaving of blocks, zfp must first be compiled with:

-DBIT_STREAM_STRIDED

to enable strided bit stream access. In the example above, if the stream word size is 64 bits and there are n blocks,
then:

stream_set_stride(stream, m, n);

implies that after every m 64-bit words have been decoded, the bit stream is advanced by m × n words to the next set
of m 64-bit words associated with the block.

Q14: How do I initialize the decompressor?

A: The zfp_stream and zfp_field objects usually need to be initialized with the same values as they had during
compression (but see Q15 for exceptions). These objects hold the compression mode and parameters, and field data
like the scalar type and dimensions. By default, these parameters are not stored with the compressed stream (the
“codestream”) and prior to zfp 0.5.0 had to be maintained separately by the application.

Since version 0.5.0, functions exist for reading and writing a 12- to 19-byte header that encodes compression and field
parameters. For applications that wish to embed only the compression parameters, e.g. when the field dimensions are
already known, there are separate functions that encode and decode this information independently.

Q15: Must I use the same parameters during compression and decompression?

A: Not necessarily. It is possible to use more tightly constrained zfp_stream parameters during decompres-
sion than were used during compression. For instance, one may use a larger zfp_stream.minbits, smaller
zfp_stream.maxbits, smaller zfp_stream.maxprec, or larger zfp_stream.minexp during decom-
pression to process fewer compressed bits than are stored, and to decompress the array more quickly at a lower
precision. This may be useful in situations where the precision and accuracy requirements are not known a priori, thus
forcing conservative settings during compression, or when the compressed stream is used for multiple purposes. For
instance, visualization usually has less stringent precision requirements than quantitative data analysis. This feature of
decompressing to a lower precision is particularly useful when the stream is stored progressively (see Q13).

Note that one may not use less constrained parameters during decompression, e.g. one cannot ask for more than
zfp_stream.maxprec bits of precision when decompressing.

Currently float arrays have a different compressed representation from compressed double arrays due to differences in
exponent width. It is not possible to compress a double array and then decompress (demote) the result to floats, for
instance. Future versions of the zfp codec may use a unified representation that does allow this.

Q16: Do strides have to match during compression and decompression?

A: No. For instance, a 2D vector field:

float in[ny][nx][2];

could be compressed as two scalar fields with strides sx = 2, sy = 2 × nx, and with pointers &in[0][0][0] and
&in[0][0][1] to the first value of each scalar field. These two scalar fields can later be decompressed as non-
interleaved fields:

66 Chapter 15. FAQ



zfp Documentation, Release 0.5.2

float out[2][ny][nx];

using strides sx = 1, sy = nx and pointers &out[0][0][0] and &out[1][0][0].

Q17: Why does zfp sometimes not respect my error tolerance?

A: zfp does not store each floating-point value independently, but represents a group of values (4, 16, or 64 values,
depending on dimensionality) as linear combinations like averages by evaluating arithmetic expressions. Just like in
uncompressed IEEE floating-point arithmetic, both representation error and roundoff error in the least significant bit(s)
often occur.

To illustrate this, consider compressing the following 1D array of four floats:

float f[4] = { 1, 1e-1, 1e-2, 1e-3 };

using the zfp command-line tool:

zfp -f -1 4 -a 0 -i input.dat -o output.dat

In spite of an error tolerance of zero, the reconstructed values are:

float g[4] = { 1, 1e-1, 9.999998e-03, 9.999946e-04 };

with a (computed) maximum error of 5.472e-9. Because f[3] = 1e-3 can only be approximately represented in radix-2
floating-point, the actual error is even smaller: 5.424e-9. This reconstruction error is primarily due to zfp‘s block-
floating-point representation, which expresses the four values in a block relative to a single, common binary exponent.
Such exponent alignment occurs also in regular IEEE floating-point operations like addition. For instance,:

float x = (f[0] + f[3]) - 1;

should of course result in x = f[3] = 1e-3, but due to exponent alignment a few of the least significant bits of
f[3] are lost in the addition, giving a result of x = 1.0000467e-3 and a roundoff error of 4.668e-8. Similarly,:

float sum = f[0] + f[1] + f[2] + f[3];

should return sum = 1.111, but is computed as 1.1110000610. Moreover, the value 1.111 cannot even be repre-
sented exactly in (radix-2) floating-point; the closest float is 1.1109999. Thus the computed error:

float error = sum - 1.111f;

which itself has some roundoff error, is 1.192e-7.

Phew! Note how the error introduced by zfp (5.472e-9) is in fact one to two orders of magnitude smaller than the
roundoff errors (4.668e-8 and 1.192e-7) introduced by IEEE floating-point in these computations. This lower error
is in part due to zfp‘s use of 30-bit significands compared to IEEE’s 24-bit single-precision significands. Note that
data sets with a large dynamic range, e.g. where adjacent values differ a lot in magnitude, are more susceptible to
representation errors.

The moral of the story is that error tolerances smaller than machine epsilon (relative to the data range) cannot always
be satisfied by zfp. Nor are such tolerances necessarily meaningful for representing floating-point data that originated
in floating-point arithmetic expressions, since accumulated roundoff errors are likely to swamp compression errors.
Because such roundoff errors occur frequently in floating-point arithmetic, insisting on lossless compression on the
grounds of accuracy is tenuous at best.

Q18: Why is the actual rate sometimes not what I requested?

67



zfp Documentation, Release 0.5.2

A: In principle, zfp allows specifying the size of a compressed block in increments of single bits, thus allowing very
fine-grained tuning of the bit rate. There are, however, cases when the desired rate does not exactly agree with the
effective rate, and users are encouraged to check the return value of zfp_stream_set_rate(), which gives the
actual rate.

There are several reasons why the requested rate may not be honored. First, the rate is specified in bits/value, while
zfp always represents a block of 4d values in d dimensions, i.e. using N = 4d × rate bits. N must be an integer number
of bits, which constrains the actual rate to be a multiple of 1 / 4d. The actual rate is computed by rounding 4d times
the desired rate.

Second, if the array dimensions are not multiples of four, then zfp pads the dimensions to the next higher multiple of
four. Thus, the total number of bits for a 2D array of dimensions nx × ny is computed in terms of the number of blocks
bx × by:

bitsize = (4 * bx) * (4 * by) * rate

where nx ≤ 4 × bx < nx + 4 and ny ≤ 4 × by < ny + 4. When amortizing bitsize over the nx × ny values, a slightly
higher rate than requested may result.

Third, to support updating compressed blocks, as is needed by zfp‘s compressed array classes, the user may request
write random access to the fixed-rate stream. To support this, each block must be aligned on a stream word boundary
(see Q12), and therefore the rate when write random access is requested must be a multiple of wordsize / 4d bits. By
default wordsize = 64 bits.

Fourth, for floating-point data, each block must hold at least the common exponent and one additional bit, which
places a lower bound on the rate.

Finally, the user may optionally include a header with each array. Although the header is small, it must be accounted
for in the rate. The function zfp_stream_maximum_size() conservatively includes space for a header, for
instance.

Q19: Can zfp perform compression in place?

Because the compressed data tends to be far smaller than the uncompressed data, it is natural to ask if the compressed
stream can overwrite the uncompressed array to avoid having to allocate separate storage for the compressed stream.
zfp does allow for the possibility of such in-place compression, but with several caveats and restrictions:

1. A bitstream must be created whose buffer points to the beginning of uncompressed (and to be compressed)
storage.

2. The array must be compressed using zfp‘s low-level API. In particular, the data must already be partitioned and
organized into contiguous blocks so that all values of a block can be pulled out once and then replaced with the
corresponding shorter compressed representation.

3. No one compressed block can occupy more space than its corresponding uncompressed block so that the not-yet
compressed data is not overwritten. This is usually easily accomplished in fixed-rate mode, although the expert
interface also allows guarding against this in all modes using the zfp_stream.maxbits parameter. This
parameter should be set to maxbits = 4^d * 8 * sizeof(type), where d is the array dimensionality
(1, 2, or 3) and where type is the scalar type of the uncompressed data.

4. No header information may be stored in the compressed stream.

In-place decompression can also be achieved, but in addition to the above constraints requires even more care:

1. The data must be decompressed in reverse block order, so that the last block is decompressed first to the
end of the block array. This requires the user to maintain a pointer to uncompressed storage and to seek via
stream_rseek() to the proper location in the compressed stream where the block is stored.

2. The space allocated to the compressed stream must be large enough to also hold the uncompressed data.

68 Chapter 15. FAQ



zfp Documentation, Release 0.5.2

An example is provided that shows how in-place compression can be done.

Q20: How should I set the precision to bound the relative error?

In general, zfp cannot bound the point-wise relative error due to its use of a block-floating-point representation, in
which all values within a block are represented in relation to a single common exponent. For a high enough dynamic
range within a block there may simply not be enough precision available to guard against loss. For instance, a block
containing the values 20 = 1 and 2-n would require a precision of n + 3 bits to represent losslessly, and zfp uses at most
64-bit integers to represent values. Thus, if n ≥ 62, then 2-n is replaced with 0, which is a 100% relative error. Note
that such loss also occurs when, for instance, 20 and 2-n are added using floating-point arithmetic (see also Q17).

It is, however, possible to bound the error relative to the largest (in magnitude) value, fmax, within a block, which if
the magnitude of values does not change too rapidly may serve as a reasonable proxy for point-wise relative errors.

One might then ask if using zfp‘s fixed-precision mode with p bits of precision ensures that the block-wise relative
error is at most 2-p × fmax. This is, unfortunately, not the case, because the requested precision, p, is ensured only
for the transform coefficients. During the inverse transform of these quantized coefficients the quantization error may
amplify. That being said, it is possible to derive a bound on the error in terms of p that would allow choosing an
appropriate precision. Such a bound is derived below.

Let

emax = floor(log2(fmax))

be the largest base-2 exponent within a block. For transform coefficient precision, p, one can show that the maximum
absolute error, err, is bounded by:

err <= k(d) * (2^emax / 2^p) <= k(d) * (fmax / 2^p)

Here k(d) is a constant that depends on the data dimensionality d:

k(d) = 20 * (15/4)^(d-1)

so that in 1D, 2D, and 3D we have:

k(1) = 20
k(2) = 125
k(3) = 1125/4

Thus, to guarantee n bits of accuracy in the decompressed data, we need to choose a higher precision, p, for the
transform coefficients:

p(n, d) = n + ceil(log2(k(d))) = n + 2 * d + 3

so that

p(n, 1) = n + 5
p(n, 2) = n + 7
p(n, 3) = n + 9

This p value should be used in the call to zfp_stream_set_precision().

Note, again, that some values in the block may have leading zeros when expressed relative to 2emax, and these leading
zeros are counted toward the n-bit precision. Using decimal to illustrate this, suppose we used 4-digit precision for a
1D block containing these four values:

69



zfp Documentation, Release 0.5.2

-1.41421e+1 ~ -1.414e+1 = -1414 * (10^1 / 1000)
+2.71828e-1 ~ +0.027e+1 = +27 * (10^1 / 1000)
+3.14159e-6 ~ +0.000e+1 = 0 * (10^1 / 1000)
+1.00000e+0 ~ +0.100e+1 = +100 * (10^1 / 1000)

with the values in the middle column aligned to the common base-10 exponent +1, and with the values on the right
expressed as scaled integers. These are all represented using four digits of precision, but some of those digits are
leading zeros.

Q21: Does zfp support lossless compression?

Yes, and no. For integer data, zfp can with few exceptions ensure lossless compression. For a given n-bit integer type
(n = 32 or n = 64), consider compressing p-bit signed integer data, with the sign bit counting toward the precision. In
other words, there are exactly 2p possible signed integers. If the integers are unsigned, then subtract 2p-1 first so that
they range from −2p-1 to 2p-1 - 1.

Lossless compression is achieved by first promoting the p-bit integers to n - 1 bits (see Q8) such that all integer values
fall in [−230, +230), when n = 32, or in [−262, +262), when n = 64. In other words, the p-bit integers first need to be
shifted left by n - p - 1 bits. After promotion, the data should be compressed in zfp’s fixed-precision mode using:

q = p + 4 * d + 1

bits of precision to ensure no loss, where d is the data dimensionality (1 ≤ d ≤ 3). Consequently, the p-bit data can
be losslessly compressed as long as p ≤ n - 4 × d - 1. The table below lists the maximum precision p that can be
losslessly compressed using 32- and 64-bit integer types.

d n=32 n=64
1 27 59
2 23 55
3 19 51

Although lossless compression is possible as long as the precision constraint is met, the precision needed to guarantee
no loss is generally much higher than the precision intrinsic in the uncompressed data, making lossless compression
via zfp not competitive with compressors designed for lossless compression. Lossy integer compression with zfp can,
on the other hand, work fairly well by using fewer than q bits of precision.

Furthermore, the minimum precision, q, given above is often larger than what is necessary in practice. There are
worst-case inputs that do require such large q values, but they are quite rare.

The reason for expanded precision, i.e., why q > p, is that zfp‘s decorrelating transform computes averages of integers,
and this transform is applied d times in d dimensions. Each average of two p-bit numbers requires p + 1 bits to avoid
loss, and each transform can be thought of involving up to four such averaging operations.

For floating-point data, fully lossless compression with zfp is unlikely, albeit possible. If the dynamic range is low
or varies slowly such that values within a 4d block have the same or similar exponent, then the precision gained by
discarding the 8 or 11 bits of the common floating-point exponents can offset the precision lost in the decorrelating
transform. For instance, if all values in a block have the same exponent, then lossless compression is obtained using
q = 26 + 4 × d ≤ 32 bits of precision for single-precision data and q = 55 + 4 × d ≤ 64 bits of precision for double-
precision data. Of course, the constraint imposed by the available integer precision n implies that lossless compression
of such data is possible only in 1D for single-precision data and only in 1D and 2D for double-precision data.

Q22: Why is my actual, measured error so much smaller than the tolerance?

For two reasons. The way zfp bounds the absolute error in fixed-accuracy mode is by keeping all transform co-
efficient bits whose place value exceeds the tolerance while discarding the less significant bits. Each such bit has
a place value that is a power of two, and therefore the tolerance must first be rounded down to the next smaller

70 Chapter 15. FAQ



zfp Documentation, Release 0.5.2

power of two, which itself will introduce some slack. This possibly lower, effective tolerance is returned by the
zfp_stream_set_accuracy() call.

Second, the quantized coefficients are then put through an inverse transform. This linear transform will combine signed
quantization errors that, in the worst case, may cause them to add up and increase the error, even though the average
(RMS) error remains the same, i.e. some errors cancel while others compound. For d-dimensional data, d such inverse
transforms are applied, with the possibility of errors cascading across transforms. To account for the worst possible
case, zfp has to conservatively lower its internal error tolerance further, once for each of the d transform passes.

Unless the data is highly oscillatory or noisy, the error is not likely to be magnified much, leaving an observed error
in the decompressed data that is much lower than the prescribed tolerance. In practice, the observed maximum error
tends to be about 4-8 times lower than the error tolerance for 3D data, while the difference is smaller for 2D and 1D
data.

We recommend experimenting with tolerances and evaluating what error levels are appropriate for each application,
e.g. by starting with a low, conservative tolerance and successively doubling it. The distribution of errors produced by
zfp is approximately Gaussian, so even if the maximum error may seem large at an individual grid point, most errors
tend to be much smaller and tightly clustered around zero.

71



zfp Documentation, Release 0.5.2

72 Chapter 15. FAQ



CHAPTER 16

Troubleshooting

This section is intended for troubleshooting problems with zfp, in case any arise, and primarily focuses on how to
correctly make use of zfp. If the decompressed data looks nothing like the original data, or if the compression ratios
obtained seem not so impressive, then it is very likely that array dimensions or compression parameters have not been
set correctly, in which case this troubleshooting guide could help.

The problems addressed in this section include:

1. Is the data dimensionality correct?

2. Do the compressor and decompressor agree on the dimensionality?

3. Have the “smooth” dimensions been identified?

4. Are the array dimensions correct?

5. Are the array dimensions large enough?

6. Is the data logically structured?

7. Is the data set embedded in a regular grid?

8. Is the data provided to the zfp executable a raw binary array?

9. Is the byte order correct?

10. Is the floating-point precision correct?

11. Is the integer precision correct?

12. Is the data provided to the zfp executable a raw binary array?

13. Has the appropriate compression mode been set?

P1: Is the data dimensionality correct?

This is one of the most common problems. First, make sure that zfp is given the correct dimensionality of the data.
For instance, an audio stream is a 1D array, an image is a 2D array, and a volume grid is a 3D array. Sometimes a data
set is a discrete collection of lower-dimensional objects. For instance, a stack of unrelated images (of the same size)
could be represented in C as a 3D array:

73



zfp Documentation, Release 0.5.2

imstack[count][ny][nx]

but since in this case the images are unrelated, no correlation would be expected along the third dimension–the under-
lying dimensionality of the data is here two. In this case, the images could be compressed one at a time, or they could
be compressed together by treating the array dimensions as:

imstack[count * ny][nx]

Note that zfp partitions d-dimensional arrays into blocks of 4d values. If ny above is not a multiple of four, then some
blocks of 4 × 4 pixels will contain pixels from different images, which could hurt compression and/or quality. Still,
this way of creating a single image by stacking multiple images is far preferable over linearizing each image into a 1D
signal, and then compressing the images as:

imstack[count][ny * nx]

This loses the correlation along the y dimension, and further introduces discontinuities unless nx is a multiple of four.

Similarly to the example above, a 2D vector field

vfield[ny][nx][2]

could be declared as a 3D array, but the x- and y-components of the 2D vectors are likely entirely unrelated. In this
case, each component needs to be compressed independently, either by rearranging the data as two scalar fields:

vfield[2][ny][nx]

or by using strides (see also FAQ #1). Note that in all these cases zfp will still compress the data, but if the dimension-
ality is not correct then the compression ratio will suffer.

P2: Do the compressor and decompressor agree on the dimensionality?

Consider compressing a 3D array:

double a[1][1][100]

with nx = 100, ny = 1, nz = 1, then decompressing the result to a 1D array:

double b[100]

with nx = 100. Although the arrays a and b occupy the same amount of memory and are in C laid out similarly, these
arrays are not equivalent to zfp because their dimensionalities differ. zfp uses different CODECs to (de)compress 1D,
2D, and 3D arrays, and the 1D decompressor expects a compressed bit stream that corresponds to a 1D array.

What happens in practice in this case is that the array a is compressed using zfp‘s 3D CODEC, which first pads the
array to

double padded[4][4][100]

When this array is correctly decompressed using the 3D CODEC, the padded values are generated but discarded. zfp‘s
1D decompressor, on the other hand, expects 100 values, not 100 × 4 × 4 = 1600 values, and therefore likely returns
garbage.

P3: Have the “smooth” dimensions been identified?

74 Chapter 16. Troubleshooting



zfp Documentation, Release 0.5.2

Closely related to P1 above, some fields simply do not vary smoothly along all dimensions, and zfp can do a good job
compressing only those dimensions that exhibit some coherence. For instance, consider a table of stock prices indexed
by date and stock:

price[stocks][dates]

One could be tempted to compress this as a 2D array, but there is likely little to no correlation in prices between
different stocks. Each such time series should be compressed independently as a 1D signal.

What about time-varying images like a video sequence? In this case, it is likely that there is correlation over time, and
that the value of a single pixel varies smoothly in time. It is also likely that each image exhibits smoothness along its
two spatial dimensions. So this can be treated as a single, 3D data set.

How about time-varying volumes, such as

field[nt][nz][ny][nx]

zfp currently supports only 1D, 2D, and 3D arrays, whereas a time-varying volume is 4D. Here the data should ideally
be organized by the three “smoothest” dimensions. Given the organization above, this could be compressed as a 3D
array:

field[nt * nz][ny][nx]

Again, do not compress this as a 3D array:

field[nt][nz][ny * nx]

P4: Are the array dimensions correct?

This is another common problem that seems obvious, but often the dimensions are accidentally transposed. Assuming
that the smooth dimensions have been identified, it is important that the dimensions are listed in the correct order. For
instance, if the data (in C notation) is organized as:

field[d1][d2][d3]

then the data is organized in memory (or on disk) with the d3 dimension varying fastest, and hence nx = d3, ny = d2,
nz = d1 using the zfp naming conventions for the dimensions, e.g. the zfp executable should be invoked with:

zfp -3 d3 d2 d1

in this case. Things will go horribly wrong if zfp in this case is called with nx = d1, ny = d2, nz = d3. The entire data
set will still compress and decompress, but compression ratio and quality will suffer greatly.

P5: Are the array dimensions large enough?

zfp partitions d-dimensional data sets into blocks of 4d values, e.g. in 3D a block consists of 4 × 4 × 4 values. If the
dimensions are not multiples of four, then zfp will “pad” the array to the next larger multiple of four. Such padding can
hurt compression. In particular, if one or more of the array dimensions are small, then the overhead of such padding
could be significant.

Consider compressing a collection of 1000 small 3D arrays:

field[1000][5][14][2]

zfp would first logically pad this to a larger array:

75



zfp Documentation, Release 0.5.2

field[1000][8][16][4]

which is (8 × 16 × 4) / (5 × 14 × 2) ~ 3.66 times larger. Although such padding often compresses well, this still
represents a significant overhead.

If a large array has been partitioned into smaller pieces, it may be best to reassemble the larger array. Or, when
possible, ensure that the sub-arrays have dimensions that are multiples of four.

P6: Is the data logically structured?

zfp was designed for logically structured data, i.e. Cartesian grids. It works much like an image compressor does,
which assumes that the data set is a structured array of pixels, and it assumes that values vary reasonably smoothly on
average, just like natural images tend to contain large regions of uniform color or smooth color gradients, like a blue
sky, smoothly varying skin tones of a human’s face, etc. Many data sets are not represented on a regular grid. For
instance, an array of particle xyz positions:

points[count][3]

is a 2D array, but does not vary smoothly in either dimension. Furthermore, such unstructured data sets need not be
organized in any particular order; the particles could be listed in any arbitrary order. One could attempt to sort the
particles, for example by the x coordinate, to promote smoothness, but this would still leave the other two dimensions
non-smooth.

Sometimes the underlying dimensions are not even known, and only the total number of floating-point values is
known. For example, suppose we only knew that the data set contained n = count × 3 values. One might be tempted
to compress this using zfp‘s 1-dimensional compressor, but once again this would not work well. Such abuse of zfp is
much akin to trying to compress an image using an audio compressor like mp3, or like compressing an n-sample piece
of music as an n-by-one sized image using an image compressor like JPEG. The results would likely not be very good.

Some data sets are logically structured but geometrically irregular. Examples include fields stored on Lagrangian
meshes that have been warped, or on spectral element grids, which use a non-uniform grid spacing. zfp assumes
that the data has been regularly sampled in each dimension, and the more the geometry of the sampling deviates
from uniform, the worse compression gets. Note that rectilinear grids with different but uniform grid spacing in each
dimension are fine. If your application uses very non-uniform sampling, then resampling onto a uniform grid (if
possible) may be advisable.

Other data sets are “block structured” and consist of piecewise structured grids that are “glued” together. Rather than
treating such data as unstructured 1D streams, consider partitioning the data set into independent (possibly overlap-
ping) regular grids.

P7: Is the data set embedded in a regular grid?

Some applications represent irregular geometry on a Cartesian grid, and leave portions of the domain unspecified.
Consider, for instance, sampling the density of the Earth onto a Cartesian grid. Here the density for grid points outside
the Earth is unspecified.

In this case, zfp does best by initializing the “background field” to all zeros. In zfp‘s fixed-accuracy mode, any “empty”
block that consists of all zeros is represented using a single bit, and therefore the overhead of representing empty space
can be kept low.

P8: Have fill values, NaNs, and infinities been removed?

It is common to signal unspecified values using what is commonly called a “fill value,” which is a special constant
value that tends to be far out of range of normal values. For instance, in climate modeling the ocean temperature over

76 Chapter 16. Troubleshooting



zfp Documentation, Release 0.5.2

land is meaningless, and it is common to use a very large temperature value such as 1e30 to signal that the temperature
is undefined for such grid points.

Very large fill values do not play well with zfp, because they both introduce artificial discontinuities and pollute nearby
values by expressing them all with respect to the common largest exponent within their block. Assuming a fill value
of 1e30, the value pi in the same block would be represented as:

0.00000000000000000000000000000314159... * 1e30

Given finite precision, the small fraction would likely be replaced with zero, resulting in complete loss of the actual
value being stored.

Other applications use NaNs (special not-a-number values) or infinities as fill values. These are even more problematic,
because they do not have a defined exponent. zfp relies on the C function frexp() to compute the exponent of the
largest (in magnitude) value within a block, but produces unspecified behavior if that value is not finite.

zfp currently has no independent mechanism for handling fill values. Ideally such special values would be signalled
separately, e.g. using a bit mask, and then replaced with zeros to ensure that they both compress well and do not
pollute actual data.

P9: Is the byte order correct?

zfp generally works with the native byte order (e.g. little or big endian) of the machine it is compiled on. One needs
only be concerned with byte order when reading raw, binary data into the zfp executable, when exchanging compressed
files across platforms, and when varying the bit stream word size on big endian machines (not common). For instance,
to compress a binary double-precision floating-point file stored in big endian byte order on a little endian machine,
byte swapping must first be done. For example, on Linux and macOS, 8-byte doubles can be byte swapped using:

objcopy -I binary -O binary --reverse-bytes=8 big.bin little.bin

See also FAQ #11 for more discussion of byte order.

P10: Is the floating-point precision correct?

Another obvious problem: Please make sure that zfp is told whether the data to compress is an array of single- (32-bit)
or double-precision (64-bit) values, e.g. by specifying the -f or -d options to the zfp executable or by passing the
appropriate zfp_type to the C functions.

P11: Is the integer precision correct?

zfp currently supports compression of 31- or 63-bit signed integers. Shorter integers (e.g., bytes, shorts) can be
compressed but must first be promoted to one of the longer types. This should always be done using zfp‘s functions
for promotion and demotion, which both perform bit shifting and biasing to handle both signed and unsigned types. It
is not sufficient to simply cast short integers to longer integers. See also FAQs #8 and #9.

P12: Is the data provided to the zfp executable a raw binary array?

zfp expects that the input file is a raw binary array of integers or floating-point values in the IEEE format, e.g. written
to file using fwrite(). Do not hand zfp a text file containing ASCII floating-point numbers. Strip the file of any
header information. Languages like Fortran tend to store with the array its size. No such metadata may be embedded
in the file.

77



zfp Documentation, Release 0.5.2

P13: Has the appropriate compression mode been set?

zfp provides three different modes of compression that trade storage and accuracy. In fixed-rate mode, the user specifies
the exact number of bits (often in increments of a fraction of a bit) of compressed storage per value (but see FAQ #18
for caveats). From the user’s perspective, this seems a very desirable feature, since it provides for a direct mechanism
for specifying how much storage to use. However, there is often a large quality penalty associated with the fixed-rate
mode, because each block of 4d values is allocated the same number of bits. In practice, the information content over
the data set varies significantly, which means that easy-to-compress regions are assigned too many bits, while too
few bits are available to faithfully represent the more challenging-to-compress regions. Although one of the unique
features of zfp, its fixed-rate mode should primarily be used only when random access to the data is needed.

zfp also provides a fixed-precision mode, where the user specifies how many uncompressed significant bits to use to
represent the floating-point fraction. This precision may not be exactly what people might normally think of. For
instance, the C float type is commonly referred to as 32-bit precision. However, the sign bit and exponent account
for nine of those bits and do not contribute to the number of significant bits of precision. Furthermore, for normal
numbers, IEEE uses a hidden implicit one bit, so most float values actually have 24 bits of precision. Furthermore,
zfp uses a block-floating-point representation with a single exponent per block, which may cause some small values
to have several leading zero bits and therefore less precision than requested. Thus, the effective precision returned by
zfp in its fixed-precision mode may in fact vary. In practice, the precision requested is only an upper bound, though
typically at least one value within a block has the requested precision.

Finally, zfp supports a fixed-accuracy mode, which except in rare circumstances (see FAQ #17) ensures that the
absolute error is bounded, i.e. the difference between any decompressed and original value is at most the tolerance
specified by the user (but usually several times smaller). Whenever possible, we recommend using this compression
mode, which depending on how easy the data is to compress results in the smallest compressed stream that respects
the error tolerance.

There is also an expert mode that allows the user to combine the constraints of fixed rate, precision, and accuracy. See
the section on compression modes for more details.

78 Chapter 16. Troubleshooting



CHAPTER 17

Limitations

zfp has evolved from a research prototype to a library that is approaching production readiness. However, the API and
even the compression codec are still undergoing changes as new important features are added.

Below is a list of known limitations of the current version of zfp. See the section on Future Directions for a discussion
of planned features that will address some of these limitations.

• The current version of zfp allows for near lossless compression through suitable parameter choices, but no guar-
antees are made that bit-for-bit lossless compression is achieved. We envision supporting lossless compression
in a future version.

• Special values like infinity and NaN are not supported. Subnormal floating-point numbers are, however, cor-
rectly handled. There is an implicit assumption that floating point conforms to IEEE, though extensions to other
floating-point formats should be possible with minor effort.

• Conventional pointers and references to individual array elements are not available. That is, constructions like
double* ptr = &a[i]; are not possible when a is a zfp array. However, as of zfp 0.5.2, proxy pointers are
available that act much like pointers to uncompressed data. Similarly, operators [] and () do not return regular
C++ references. Instead, a proxy reference class is used (similar to how STL bit vectors are implemented). These
proxy references and pointers can, however, safely be passed to functions and used where regular references and
pointers can.

• Although the current version of zfp supports iterators, pointers, and references to array elements, ‘const’ ver-
sions of these accessors are not yet available for read-only access.

• There currently is no way to make a complete copy of a compressed array, i.e. a = b; does not work for arrays a
and b. Copy constructors and assignment operators will be added in the near future.

• zfp can potentially provide higher precision than conventional float and double arrays, but the interface currently
does not expose this. For example, such added precision could be useful in finite difference computations, where
catastrophic cancellation can be an issue when insufficient precision is available.

• Only single and double precision types are supported. Generalizations to IEEE half and quad precision would
be useful. For instance, compressed 64-bit-per-value storage of 128-bit quad-precision numbers could greatly
improve the accuracy of double-precision floating-point computations using the same amount of storage.

79



zfp Documentation, Release 0.5.2

• Complex-valued arrays are not directly supported. Real and imaginary components must be stored as separate
arrays, which may result in lost opportunities for compression, e.g. if the complex magnitude is constant and
only the phase varies.

• zfp arrays are not thread-safe. We are considering options for supporting multi-threaded access, e.g. for OpenMP
parallelization.

• This version of zfp does not run on the GPU. Some work has been done to port zfp to CUDA, and an experi-
mental version is available.

80 Chapter 17. Limitations

https://github.com/mclarsen/cuzfp/
https://github.com/mclarsen/cuzfp/


CHAPTER 18

Future Directions

zfp is actively being developed and plans have been made to add a number of important features, including:

• Support for 4D arrays, e.g., for compressing time-varying 3D fields. Although the zfp compression algorithm
trivially generalizes to higher dimensions, d, the current implementation is hampered by the lack of integer types
large enough to hold 4d bits for d > 3. For now, higher-dimensional data should be compressed as collections of
independent 3D fields.

• Tagging of missing values. zfp currently assumes that arrays are dense, i.e., each array element stores a valid
numerical value. In many science applications this is not the case. For instance, in climate modeling, ocean
temperature is not defined over land. In other applications, the domain is not rectangular but irregular and
embedded in a rectangular array. Such examples of sparse arrays demand a mechanism to tag values as missing
or indeterminate. Current solutions often rely on tagging missing values as NaNs or special, often very large
sentinel values outside the normal range, which can lead to poor compression and complete loss of accuracy in
nearby valid values. See FAQ #7.

• Support for NaNs and infinities. Similar to missing values, some applications store special IEEE floating-point
values that are not yet supported by zfp. In fact, the presence of such values will currently result in undefined
behavior and loss of data for all values within a block that contains non-finite values.

• Lossless compression. Although zfp can usually limit compression errors to within floating-point roundoff
error, some applications demand bit-for-bit accurate reconstruction. Strategies for lossless compression are
currently being evaluated.

• Progressive decompression. Streaming large data sets from remote storage for visualization can be time con-
suming, even when the data is compressed. Progressive streaming allows the data to be reconstructed at reduced
precision over the entire domain, with quality increasing progressively as more data arrives. The low-level bit
stream interface already supports progressive access by interleaving bits across blocks (see FAQ #13), but zfp
lacks a high-level API for generating and accessing progressive streams.

• Parallel compression. zfp‘s data partitioning into blocks invites opportunities for data parallelism on multi-
threaded platforms by dividing the blocks among threads. An OpenMP implementation of parallel compression
is under development that produces compressed streams that are identical to serially compressed streams. An
experimental CUDA implementation for parallel compression and decompression on the GPU is also under
development.

81

https://github.com/mclarsen/cuzfp/


zfp Documentation, Release 0.5.2

• Thread-safe arrays. zfp‘s compressed arrays are not thread-safe, even when performing read accesses only.
The primary reason is that the arrays employ caching, which requires special protection to avoid race conditions.
Work is planned to support both read-only and read-write accessible arrays that are thread-safe, most likely by
using thread-local caches for read-only access and disjoint sub-arrays for read-write access, where each thread
has exclusive ownership of a portion of the array.

• Variable-rate arrays. zfp currently supports only fixed-rate compressed arrays, which wastes bits in smooth
regions with little information content while too few bits may be allocated to accurately preserve sharp features
such as shocks and material interfaces, which tend to drive the physics in numerical simulations. Two candidate
solutions have been identified for read-only and read-write access to variable-rate arrays with very modest
storage overhead. These arrays will support both fixed precision and accuracy.

• Array operations. zfp‘s compressed arrays currently support basic indexing and initialization, but lack essential
features such as shallow and deep copies, slicing, views, etc. Work is underway to address these deficiencies.

• Language bindings. The main compression codec is written in C89 to facilitate calls from other languages,
but would benefit from language wrappers to ease integration. zfp‘s compressed arrays exploit the operator
overloading provided by C++, and therefore can currently not be used in other languages, including C. Work is
planned to add complete language bindings for C, C++, Fortran, and Python.

Please contact Peter Lindstrom with requests for features not listed above.

82 Chapter 18. Future Directions

mailto:pl@llnl.gov


CHAPTER 19

Contributors

• LLNL zfp team

– Peter Lindstrom (Project Lead)

– Matt Larsen (CUDA port)

– Mark Miller (HDF5 plugin)

– Markus Salasoo (regression tests, software engineering)

• External contributors

– Chuck Atkins, Kitware (CMake support)

– Stephen Hamilton, Johns Hopkins University (VTK plugin)

– Mark Kim, ORNL (original CUDA port)

– Amik St-Cyr, Shell (OpenMP compressor)

– Eric Suchyta, ORNL (ADIOS plugin)

83

https://github.com/mclarsen/cuzfp/
https://github.com/LLNL/H5Z-ZFP


zfp Documentation, Release 0.5.2

84 Chapter 19. Contributors



CHAPTER 20

Release Notes

zfp 0.5.2, September 28, 2017

• Added iterators and proxy objects for pointers and references.

• Added example illustrating how to use iterators and pointers.

• Modified diffusion example to optionally use iterators.

• Moved internal headers under array to array/zfp.

• Modified 64-bit integer typedefs to avoid the C89 non-compliant long long and allow for user-supplied types
and literal suffixes.

• Renamed compile-time macros that did not have a ZFP prefix.

• Fixed issue with setting stream word type via CMake.

• Rewrote documentation in reStructuredText and added complete documentation of all public functions, classes,
types, and macros. Removed ASCII documentation.

zfp 0.5.1, March 28, 2017

• This release primarily fixes a few minor issues but also includes changes in anticipation of a large number
of planned future additions to the library. No changes have been made to the compressed format, which is
backwards compatible with version 0.5.0.

• Added high-level API support for integer types.

• Separated library version from CODEC version and added version string.

• Added example that illustrates in-place compression.

• Added support for CMake builds.

• Corrected inconsistent naming of BIT_STREAM macros in code and documentation.

• Renamed some of the header bit mask macros.

• Added return values to stream_skip and stream_flush to indicate the number of bits skipped or output.

85



zfp Documentation, Release 0.5.2

• Renamed stream_block and stream_delta to make it clear that they refer to strided streams. Added missing
definition of stream_stride_block.

• Changed int/uint types in places to use ptrdiff_t/size_t where appropriate.

• Changed API for zfp_set_precision and zfp_set_accuracy to not require the scalar type.

• Added missing static keyword in decode_block.

• Changed testzfp to allow specifying which tests to perform on the command line.

• Fixed bug that prevented defining uninitialized arrays.

• Fixed incorrect computation of array sizes in zfp_field_size.

• Fixed minor issues that prevented code from compiling on Windows.

• Fixed issue with fixed-accuracy headers that caused unnecessary storage.

• Modified directory structure.

• Added documentation that discusses common issues with using zfp.

zfp 0.5.0, February 29, 2016

• Modified CODEC to more efficiently encode blocks whose values are all zero or are smaller in magnitude than
the absolute error tolerance. This allows representing “empty” blocks using only one bit each. This version is
not backwards compatible with prior zfp versions.

• Changed behavior of zfp_compress and zfp_decompress to not automatically rewind the bit stream. This makes
it easier to concatenate multiple compressed bit streams, e.g. when compressing vector fields or multiple scalars
together.

• Added functions for compactly encoding the compression parameters and field meta data, e.g. for producing
self-contained compressed streams. Also added functions for reading and writing a header containing these
parameters.

• Changed the zfp example program interface to allow reading and writing compressed streams, optionally with a
header. The zfp tool can now be used to compress and decompress files as a stand alone utility.

zfp 0.4.1, December 28, 2015

• Fixed bug that caused segmentation fault when compressing 3D arrays whose dimensions are not multiples of
four. Specifically, arrays of dimensions nx * ny * nz, with ny not a multiple of four, were not handled correctly.

• Modified examples/fields.h to ensure standard compliance. Previously, C99 support was needed to handle the
hex float constants, which are not supported in C++98.

• Added simple.c as a minimal example of how to call the compressor.

• Changed compilation of diffusion example to output two executables: one with and one without compression.

zfp 0.4.0, December 5, 2015

• Substantial changes to the compression algorithm that improve PSNR by about 6 dB and speed by a factor of
2-3. These changes are not backward compatible with previous versions of zfp.

• Added support for 31-bit and 63-bit integer data, as well as shorter integer types.

• Rewrote compression codec entirely in C to make linking and calling easier from other programming languages,
and to expose the low-level interface through C instead of C++. This necessitated significant changes to the API
as well.

• Minor changes to the C++ compressed array API, as well as major implementation changes to support the C
library. The namespace and public types are now all in lower case.

• Deprecated support for general fixed-point decorrelating transforms and slimmed down implementation.

86 Chapter 20. Release Notes



zfp Documentation, Release 0.5.2

• Added new examples for evaluating the throughput of the (de)compressor and for compressing grayscale images
in the pgm format.

• Added FAQ.

zfp 0.3.2, December 3, 2015

• Fixed bug in Array::get() that caused the wrong cached block to be looked up, thus occasionally copying incor-
rect values back to parts of the array.

zfp 0.3.1, May 6, 2015

• Fixed rare bug caused by exponent underflow in blocks with no normal and some subnormal numbers.

zfp 0.3.0, March 3, 2015

• Modified the default decorrelating transform to one that uses only additions and bit shifts. This new transform,
in addition to being faster, also has some theoretical optimality properties and tends to improve rate distortion.

• Added compile-time support for parameterized transforms, e.g. to support other popular transforms like DCT,
HCT, and Walsh-Hadamard.

• Made forward transform range preserving: (-1, 1) is mapped to (-1, 1). Consequently Q1.62 fixed point can be
used throughout.

• Changed the order in which bits are emitted within each bit plane to be more intelligent. Group tests are now
deferred until they are needed, i.e. just before the value bits for the group being tested. This improves the quality
of fixed-rate encodings, but has no impact on compressed size.

• Made several optimizations to improve performance.

• Added floating-point traits to reduce the number of template parameters. It is now possible to declare a 3D array
as Array3<float>, for example.

• Added functions for setting the array scalar type and dimensions.

• Consolidated several header files.

• Added testzfp for regression testing.

zfp 0.2.1, December 12, 2014

• Added Win64 support via Microsoft Visual Studio compiler.

• Fixed broken support for IBM’s xlc compiler.

• Made several minor changes to suppress compiler warnings.

• Documented expected output for the diffusion example.

zfp 0.2.0, December 2, 2014

• The compression interface from zfpcompress was relocated to a separate library, called libzfp, and modified to
be callable from C. This API now uses a parameter object (zfp_params) to specify array type and dimensions as
well as compression parameters.

• Several utility functions were added to simplify libzfp usage:

– Functions for setting the rate, precision, and accuracy. Corresponding functions were also added to the
Codec class.

– A function for estimating the buffer size needed for compression.

• The Array class functionality was expanded:

– Support for accessing the compressed bit stream stored with an array, e.g. for offline compressed storage
and for initializing an already compressed array.

87



zfp Documentation, Release 0.5.2

– Functions for dynamically specifying the cache size.

– The default cache is now direct-mapped instead of two-way associative.

• Minor bug fixes:

– Corrected the value of the lowest possible bit plane to account for both the smallest exponent and the
number of bits in the significand.

– Corrected inconsistent use of rate and precision. The rate refers to the number of compressed bits per
floating-point value, while the precision refers to the number of uncompressed bits. The Array API was
changed accordingly.

zfp 0.1.0, November 12, 2014

• Initial beta release.

88 Chapter 20. Release Notes



Index

Symbols
-1 <nx>

command line option, 53
-2 <nx> <ny>

command line option, 53
-3 <nx> <ny> <nz>

command line option, 53
-a <tolerance>

command line option, 53
-c <minbits> <maxbits> <maxprec> <minexp>

command line option, 53
-d

command line option, 53
-f

command line option, 53
-h

command line option, 52
-i <path>

command line option, 52
-o <path>

command line option, 52
-p <precision>

command line option, 53
-q

command line option, 52
-r <rate>

command line option, 53
-s

command line option, 52
-t <type>

command line option, 53
-z <path>

command line option, 52

B
BIT_STREAM_STRIDED (C macro), 9
BIT_STREAM_WORD_TYPE (C macro), 9
bitstream (C type), 30

C
command line option

-1 <nx>, 53
-2 <nx> <ny>, 53
-3 <nx> <ny> <nz>, 53
-a <tolerance>, 53
-c <minbits> <maxbits> <maxprec> <minexp>, 53
-d, 53
-f, 53
-h, 52
-i <path>, 52
-o <path>, 52
-p <precision>, 53
-q, 52
-r <rate>, 53
-s, 52
-t <type>, 53
-z <path>, 52

Compression mode, 12
Expert mode, 13
Fixed-accuracy mode, 15
Fixed-precision mode, 14
Fixed-rate mode, 14

Configuration, 8

E
environment variable

LD_LIBRARY_PATH, 8

I
Iterators, 38

L
LD_LIBRARY_PATH, 8

P
Pointers, 37

R
Rate, 14

89



zfp Documentation, Release 0.5.2

References, 36

S
stream_align (C function), 31
stream_capacity (C function), 30
stream_close (C function), 30
stream_data (C function), 30
stream_flush (C function), 31
stream_open (C function), 30
stream_pad (C function), 31
stream_read_bit (C function), 31
stream_read_bits (C function), 31
stream_rewind (C function), 31
stream_rseek (C function), 31
stream_rtell (C function), 31
stream_set_stride (C function), 31
stream_size (C function), 30
stream_skip (C function), 31
stream_stride_block (C function), 31
stream_stride_delta (C function), 31
stream_word_bits (C variable), 30
stream_write_bit (C function), 31
stream_write_bits (C function), 31
stream_wseek (C function), 31
stream_wtell (C function), 31

W
word (C type), 30

Z
zfp::array (C++ class), 34
zfp::array1 (C++ class), 35
zfp::array1::array1 (C++ function), 35
zfp::array1::iterator (C++ class), 38
zfp::array1::iterator::operator+ (C++ function), 40
zfp::array1::iterator::operator+= (C++ function), 40
zfp::array1::iterator::operator- (C++ function), 40
zfp::array1::iterator::operator– (C++ function), 40
zfp::array1::iterator::operator-= (C++ function), 40
zfp::array1::iterator::operator> (C++ function), 40
zfp::array1::iterator::operator>= (C++ function), 40
zfp::array1::iterator::operator< (C++ function), 40
zfp::array1::iterator::operator<= (C++ function), 40
zfp::array1::iterator::operator[] (C++ function), 40
zfp::array1::operator() (C++ function), 36
zfp::array1::pointer (C++ class), 37
zfp::array1::reference (C++ class), 36
zfp::array1::resize (C++ function), 35
zfp::array2 (C++ class), 35
zfp::array2::array2 (C++ function), 35
zfp::array2::iterator (C++ class), 38
zfp::array2::operator() (C++ function), 36
zfp::array2::pointer (C++ class), 37
zfp::array2::reference (C++ class), 36

zfp::array2::resize (C++ function), 35
zfp::array2::size_x (C++ function), 35
zfp::array2::size_y (C++ function), 35
zfp::array3 (C++ class), 35
zfp::array3::array3 (C++ function), 35
zfp::array3::iterator (C++ class), 39
zfp::array3::operator() (C++ function), 36
zfp::array3::pointer (C++ class), 37
zfp::array3::reference (C++ class), 36
zfp::array3::resize (C++ function), 35
zfp::array3::size_x (C++ function), 35
zfp::array3::size_y (C++ function), 35
zfp::array3::size_z (C++ function), 35
zfp::array::~array (C++ function), 34
zfp::array::array (C++ function), 34
zfp::array::begin (C++ function), 35
zfp::array::cache_size (C++ function), 34
zfp::array::clear_cache (C++ function), 34
zfp::array::compressed_data (C++ function), 34
zfp::array::compressed_size (C++ function), 34
zfp::array::end (C++ function), 35
zfp::array::flush_cache (C++ function), 34
zfp::array::get (C++ function), 34
zfp::array::operator= (C++ function), 34
zfp::array::operator[] (C++ function), 34, 35
zfp::array::rate (C++ function), 34
zfp::array::set (C++ function), 34
zfp::array::set_cache_size (C++ function), 34
zfp::array::set_rate (C++ function), 34
zfp::array::size (C++ function), 34
zfp::arrayANY::iterator::difference_type (C++ type), 39
zfp::arrayANY::iterator::i (C++ function), 39
zfp::arrayANY::iterator::iterator_category (C++ type), 39
zfp::arrayANY::iterator::j (C++ function), 39
zfp::arrayANY::iterator::k (C++ function), 39
zfp::arrayANY::iterator::operator

= (C++ function), 39
zfp::arrayANY::iterator::operator* (C++ function), 39
zfp::arrayANY::iterator::operator++ (C++ function), 39
zfp::arrayANY::iterator::operator= (C++ function), 39
zfp::arrayANY::iterator::operator== (C++ function), 39
zfp::arrayANY::iterator::pointer (C++ type), 39
zfp::arrayANY::iterator::reference (C++ type), 39
zfp::arrayANY::iterator::value_type (C++ type), 39
zfp::arrayANY::pointer::operator

= (C++ function), 38
zfp::arrayANY::pointer::operator* (C++ function), 38
zfp::arrayANY::pointer::operator+ (C++ function), 38
zfp::arrayANY::pointer::operator++ (C++ function), 38
zfp::arrayANY::pointer::operator+= (C++ function), 38
zfp::arrayANY::pointer::operator- (C++ function), 38
zfp::arrayANY::pointer::operator– (C++ function), 38
zfp::arrayANY::pointer::operator-= (C++ function), 38
zfp::arrayANY::pointer::operator= (C++ function), 38

90 Index



zfp Documentation, Release 0.5.2

zfp::arrayANY::pointer::operator== (C++ function), 38
zfp::arrayANY::pointer::operator[] (C++ function), 38
zfp::arrayANY::reference::operator*= (C++ function), 37
zfp::arrayANY::reference::operator+= (C++ function), 37
zfp::arrayANY::reference::operator-= (C++ function), 37
zfp::arrayANY::reference::operator/= (C++ function), 37
zfp::arrayANY::reference::operator= (C++ function), 37
zfp::arrayANY::reference::operator& (C++ function), 37
ZFP_BIT_STREAM_WORD_SIZE (C macro), 9
ZFP_CODEC (C macro), 18
zfp_codec_version (C variable), 19
zfp_compress (C function), 22
zfp_decode_block_double_1 (C function), 25
zfp_decode_block_double_2 (C function), 26
zfp_decode_block_double_3 (C function), 26
zfp_decode_block_float_1 (C function), 25
zfp_decode_block_float_3 (C function), 26
zfp_decode_block_int32_1 (C function), 25
zfp_decode_block_int32_3 (C function), 26
zfp_decode_block_int64_1 (C function), 25
zfp_decode_block_int64_3 (C function), 26
zfp_decode_block_strided_double_1 (C function), 26
zfp_decode_block_strided_double_3 (C function), 27
zfp_decode_block_strided_float_1 (C function), 26
zfp_decode_block_strided_float_3 (C function), 26
zfp_decode_block_strided_int32_1 (C function), 26
zfp_decode_block_strided_int32_3 (C function), 26
zfp_decode_block_strided_int64_1 (C function), 26
zfp_decode_block_strided_int64_3 (C function), 26
zfp_decode_partial_block_strided_double_3 (C func-

tion), 27
zfp_decode_partial_block_strided_float_3 (C function),

27
zfp_decode_partial_block_strided_int32_3 (C function),

27
zfp_decode_partial_block_strided_int64_3 (C function),

27
zfp_decompress (C function), 22
zfp_demote_int32_to_int16 (C function), 27
zfp_demote_int32_to_int8 (C function), 27
zfp_demote_int32_to_uint16 (C function), 27
zfp_demote_int32_to_uint8 (C function), 27
zfp_encode_block_double_1 (C function), 24
zfp_encode_block_double_2 (C function), 24
zfp_encode_block_double_3 (C function), 25
zfp_encode_block_float_1 (C function), 24
zfp_encode_block_float_2 (C function), 24
zfp_encode_block_float_3 (C function), 25
zfp_encode_block_int32_1 (C function), 24
zfp_encode_block_int32_2 (C function), 24
zfp_encode_block_int32_3 (C function), 25
zfp_encode_block_int64_1 (C function), 24
zfp_encode_block_int64_2 (C function), 24
zfp_encode_block_int64_3 (C function), 25

zfp_encode_block_strided_double_1 (C function), 24
zfp_encode_block_strided_double_2 (C function), 24
zfp_encode_block_strided_double_3 (C function), 25
zfp_encode_block_strided_float_1 (C function), 24
zfp_encode_block_strided_float_2 (C function), 24
zfp_encode_block_strided_float_3 (C function), 25
zfp_encode_block_strided_int32_1 (C function), 24
zfp_encode_block_strided_int32_2 (C function), 24
zfp_encode_block_strided_int32_3 (C function), 25
zfp_encode_block_strided_int64_1 (C function), 24
zfp_encode_block_strided_int64_2 (C function), 24
zfp_encode_block_strided_int64_3 (C function), 25
zfp_encode_partial_block_strided_double_1 (C func-

tion), 24
zfp_encode_partial_block_strided_double_2 (C func-

tion), 25
zfp_encode_partial_block_strided_double_3 (C func-

tion), 25
zfp_encode_partial_block_strided_float_1 (C function),

24
zfp_encode_partial_block_strided_float_2 (C function),

25
zfp_encode_partial_block_strided_float_3 (C function),

25
zfp_encode_partial_block_strided_int32_1 (C function),

24
zfp_encode_partial_block_strided_int32_2 (C function),

24
zfp_encode_partial_block_strided_int32_3 (C function),

25
zfp_encode_partial_block_strided_int64_1 (C function),

24
zfp_encode_partial_block_strided_int64_2 (C function),

25
zfp_encode_partial_block_strided_int64_3 (C function),

25
zfp_field (C type), 19
zfp_field_1d (C function), 21
zfp_field_2d (C function), 21
zfp_field_3d (C function), 21
zfp_field_alloc (C function), 21
zfp_field_dimensionality (C function), 21
zfp_field_free (C function), 21
zfp_field_metadata (C function), 21
zfp_field_pointer (C function), 21
zfp_field_precision (C function), 21
zfp_field_set_metadata (C function), 22
zfp_field_set_pointer (C function), 22
zfp_field_set_size_1d (C function), 22
zfp_field_set_size_2d (C function), 22
zfp_field_set_size_3d (C function), 22
zfp_field_set_stride_1d (C function), 22
zfp_field_set_stride_2d (C function), 22
zfp_field_set_stride_3d (C function), 22

Index 91



zfp Documentation, Release 0.5.2

zfp_field_set_type (C function), 22
zfp_field_size (C function), 21
zfp_field_stride (C function), 21
zfp_field_type (C function), 21
ZFP_HEADER_FULL (C macro), 18
ZFP_HEADER_MAGIC (C macro), 18
ZFP_HEADER_MAX_BITS (C macro), 18
ZFP_HEADER_META (C macro), 18
ZFP_HEADER_MODE (C macro), 18
ZFP_INT64 (C macro), 8
ZFP_INT64_SUFFIX (C macro), 8
zfp_library_version (C variable), 19
ZFP_MAGIC_BITS (C macro), 18
ZFP_MAX_BITS (C macro), 18
ZFP_MAX_PREC (C macro), 18
ZFP_META_BITS (C macro), 18
ZFP_MIN_BITS (C macro), 18
ZFP_MIN_EXP (C macro), 18
ZFP_MODE_LONG_BITS (C macro), 18
ZFP_MODE_SHORT_BITS (C macro), 18
ZFP_MODE_SHORT_MAX (C macro), 18
zfp_promote_int16_to_int32 (C function), 27
zfp_promote_int8_to_int32 (C function), 27
zfp_promote_uint16_to_int32 (C function), 27
zfp_promote_uint8_to_int32 (C function), 27
zfp_read_header (C function), 22
zfp_stream (C type), 18
zfp_stream.maxbits (C member), 13
zfp_stream.maxprec (C member), 13
zfp_stream.minbits (C member), 13
zfp_stream.minexp (C member), 14
zfp_stream_align (C function), 23
zfp_stream_bit_stream (C function), 20
zfp_stream_close (C function), 20
zfp_stream_compressed_size (C function), 20
zfp_stream_flush (C function), 23
zfp_stream_maximum_size (C function), 20
zfp_stream_mode (C function), 20
zfp_stream_open (C function), 20
zfp_stream_params (C function), 20
zfp_stream_rewind (C function), 20
zfp_stream_set_accuracy (C function), 21
zfp_stream_set_bit_stream (C function), 20
zfp_stream_set_mode (C function), 21
zfp_stream_set_params (C function), 21
zfp_stream_set_precision (C function), 20
zfp_stream_set_rate (C function), 20
zfp_type (C type), 19
zfp_type_size (C function), 20
ZFP_UINT64 (C macro), 8
ZFP_UINT64_SUFFIX (C macro), 8
ZFP_VERSION (C macro), 17
ZFP_VERSION_MAJOR (C macro), 17
ZFP_VERSION_MINOR (C macro), 17

ZFP_VERSION_PATCH (C macro), 17
ZFP_VERSION_STRING (C macro), 17
zfp_version_string (C variable), 19
ZFP_WITH_ALIGNED_ALLOC (C macro), 8
ZFP_WITH_CACHE_FAST_HASH (C macro), 9
ZFP_WITH_CACHE_PROFILE (C macro), 9
ZFP_WITH_CACHE_TWOWAY (C macro), 8
zfp_write_header (C function), 22

92 Index


	Introduction
	Overview
	License
	Installation
	GNU Builds
	CMake Builds
	Compile-Time Macros

	Algorithm
	Compression Modes
	Expert Mode
	Fixed-Rate Mode
	Fixed Precision
	Fixed Accuracy

	High-Level C API
	Macros
	Types
	Constants
	Functions

	Low-Level C API
	Stream Manipulation
	Encoder
	Decoder
	Utility Functions

	Bit Stream API
	Strided Streams
	Macros
	Types
	Constants
	Functions

	Compressed Arrays
	Array Classes
	Caching
	References
	Pointers
	Iterators

	Tutorial
	High-Level C Interface
	Low-Level C Interface
	Compressed C++ Arrays

	File Compressor
	Usage

	Code Examples
	Simple Compressor
	Diffusion Solver
	Speed Benchmark
	PGM Image Compression
	In-place Compression
	Iterators

	Regression Tests
	FAQ
	Troubleshooting
	Limitations
	Future Directions
	Contributors
	Release Notes

